Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{12}{13}\sqrt{1-x^{2}}=\frac{3}{5}+\frac{5}{13}x
Subtract -\frac{5}{13}x from both sides of the equation.
\left(\frac{12}{13}\sqrt{1-x^{2}}\right)^{2}=\left(\frac{3}{5}+\frac{5}{13}x\right)^{2}
Square both sides of the equation.
\left(\frac{12}{13}\right)^{2}\left(\sqrt{1-x^{2}}\right)^{2}=\left(\frac{3}{5}+\frac{5}{13}x\right)^{2}
Expand \left(\frac{12}{13}\sqrt{1-x^{2}}\right)^{2}.
\frac{144}{169}\left(\sqrt{1-x^{2}}\right)^{2}=\left(\frac{3}{5}+\frac{5}{13}x\right)^{2}
Calculate \frac{12}{13} to the power of 2 and get \frac{144}{169}.
\frac{144}{169}\left(1-x^{2}\right)=\left(\frac{3}{5}+\frac{5}{13}x\right)^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
\frac{144}{169}-\frac{144}{169}x^{2}=\left(\frac{3}{5}+\frac{5}{13}x\right)^{2}
Use the distributive property to multiply \frac{144}{169} by 1-x^{2}.
\frac{144}{169}-\frac{144}{169}x^{2}=\frac{9}{25}+\frac{6}{13}x+\frac{25}{169}x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{3}{5}+\frac{5}{13}x\right)^{2}.
\frac{144}{169}-\frac{144}{169}x^{2}-\frac{9}{25}=\frac{6}{13}x+\frac{25}{169}x^{2}
Subtract \frac{9}{25} from both sides.
\frac{2079}{4225}-\frac{144}{169}x^{2}=\frac{6}{13}x+\frac{25}{169}x^{2}
Subtract \frac{9}{25} from \frac{144}{169} to get \frac{2079}{4225}.
\frac{2079}{4225}-\frac{144}{169}x^{2}-\frac{6}{13}x=\frac{25}{169}x^{2}
Subtract \frac{6}{13}x from both sides.
\frac{2079}{4225}-\frac{144}{169}x^{2}-\frac{6}{13}x-\frac{25}{169}x^{2}=0
Subtract \frac{25}{169}x^{2} from both sides.
\frac{2079}{4225}-x^{2}-\frac{6}{13}x=0
Combine -\frac{144}{169}x^{2} and -\frac{25}{169}x^{2} to get -x^{2}.
-x^{2}-\frac{6}{13}x+\frac{2079}{4225}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{6}{13}\right)±\sqrt{\left(-\frac{6}{13}\right)^{2}-4\left(-1\right)\times \frac{2079}{4225}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -\frac{6}{13} for b, and \frac{2079}{4225} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{6}{13}\right)±\sqrt{\frac{36}{169}-4\left(-1\right)\times \frac{2079}{4225}}}{2\left(-1\right)}
Square -\frac{6}{13} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{6}{13}\right)±\sqrt{\frac{36}{169}+4\times \frac{2079}{4225}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-\frac{6}{13}\right)±\sqrt{\frac{36}{169}+\frac{8316}{4225}}}{2\left(-1\right)}
Multiply 4 times \frac{2079}{4225}.
x=\frac{-\left(-\frac{6}{13}\right)±\sqrt{\frac{9216}{4225}}}{2\left(-1\right)}
Add \frac{36}{169} to \frac{8316}{4225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{6}{13}\right)±\frac{96}{65}}{2\left(-1\right)}
Take the square root of \frac{9216}{4225}.
x=\frac{\frac{6}{13}±\frac{96}{65}}{2\left(-1\right)}
The opposite of -\frac{6}{13} is \frac{6}{13}.
x=\frac{\frac{6}{13}±\frac{96}{65}}{-2}
Multiply 2 times -1.
x=\frac{\frac{126}{65}}{-2}
Now solve the equation x=\frac{\frac{6}{13}±\frac{96}{65}}{-2} when ± is plus. Add \frac{6}{13} to \frac{96}{65} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{63}{65}
Divide \frac{126}{65} by -2.
x=-\frac{\frac{66}{65}}{-2}
Now solve the equation x=\frac{\frac{6}{13}±\frac{96}{65}}{-2} when ± is minus. Subtract \frac{96}{65} from \frac{6}{13} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{33}{65}
Divide -\frac{66}{65} by -2.
x=-\frac{63}{65} x=\frac{33}{65}
The equation is now solved.
\frac{12}{13}\sqrt{1-\left(-\frac{63}{65}\right)^{2}}-\frac{5}{13}\left(-\frac{63}{65}\right)=\frac{3}{5}
Substitute -\frac{63}{65} for x in the equation \frac{12}{13}\sqrt{1-x^{2}}-\frac{5}{13}x=\frac{3}{5}.
\frac{3}{5}=\frac{3}{5}
Simplify. The value x=-\frac{63}{65} satisfies the equation.
\frac{12}{13}\sqrt{1-\left(\frac{33}{65}\right)^{2}}-\frac{5}{13}\times \frac{33}{65}=\frac{3}{5}
Substitute \frac{33}{65} for x in the equation \frac{12}{13}\sqrt{1-x^{2}}-\frac{5}{13}x=\frac{3}{5}.
\frac{3}{5}=\frac{3}{5}
Simplify. The value x=\frac{33}{65} satisfies the equation.
x=-\frac{63}{65} x=\frac{33}{65}
List all solutions of \frac{12\sqrt{1-x^{2}}}{13}=\frac{5x}{13}+\frac{3}{5}.