Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{12\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}-\frac{1}{\sqrt{3}}
Rationalize the denominator of \frac{12}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
\frac{12\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{3}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(\sqrt{2}-\sqrt{3}\right)}{2-3}-\frac{1}{\sqrt{3}}
Square \sqrt{2}. Square \sqrt{3}.
\frac{12\left(\sqrt{2}-\sqrt{3}\right)}{-1}-\frac{1}{\sqrt{3}}
Subtract 3 from 2 to get -1.
-12\left(\sqrt{2}-\sqrt{3}\right)-\frac{1}{\sqrt{3}}
Anything divided by -1 gives its opposite.
-12\left(\sqrt{2}-\sqrt{3}\right)-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-12\left(\sqrt{2}-\sqrt{3}\right)-\frac{\sqrt{3}}{3}
The square of \sqrt{3} is 3.
-12\sqrt{2}+12\sqrt{3}-\frac{\sqrt{3}}{3}
Use the distributive property to multiply -12 by \sqrt{2}-\sqrt{3}.
-12\sqrt{2}+\frac{35}{3}\sqrt{3}
Combine 12\sqrt{3} and -\frac{\sqrt{3}}{3} to get \frac{35}{3}\sqrt{3}.