Evaluate
\frac{5\sqrt{3}+3}{8}\approx 1.457531755
Factor
\frac{\sqrt{3} {(\sqrt{3} + 5)}}{8} = 1.4575317547305482
Share
Copied to clipboard
\frac{12+9\sqrt{3}}{12+4\sqrt{3}}\times 1
Divide 12-4\sqrt{3} by 12-4\sqrt{3} to get 1.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{\left(12+4\sqrt{3}\right)\left(12-4\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{12+9\sqrt{3}}{12+4\sqrt{3}} by multiplying numerator and denominator by 12-4\sqrt{3}.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{12^{2}-\left(4\sqrt{3}\right)^{2}}\times 1
Consider \left(12+4\sqrt{3}\right)\left(12-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-\left(4\sqrt{3}\right)^{2}}\times 1
Calculate 12 to the power of 2 and get 144.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-4^{2}\left(\sqrt{3}\right)^{2}}\times 1
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-16\left(\sqrt{3}\right)^{2}}\times 1
Calculate 4 to the power of 2 and get 16.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-16\times 3}\times 1
The square of \sqrt{3} is 3.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{144-48}\times 1
Multiply 16 and 3 to get 48.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{96}\times 1
Subtract 48 from 144 to get 96.
\frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{96}
Express \frac{\left(12+9\sqrt{3}\right)\left(12-4\sqrt{3}\right)}{96}\times 1 as a single fraction.
\frac{144-48\sqrt{3}+108\sqrt{3}-36\left(\sqrt{3}\right)^{2}}{96}
Apply the distributive property by multiplying each term of 12+9\sqrt{3} by each term of 12-4\sqrt{3}.
\frac{144+60\sqrt{3}-36\left(\sqrt{3}\right)^{2}}{96}
Combine -48\sqrt{3} and 108\sqrt{3} to get 60\sqrt{3}.
\frac{144+60\sqrt{3}-36\times 3}{96}
The square of \sqrt{3} is 3.
\frac{144+60\sqrt{3}-108}{96}
Multiply -36 and 3 to get -108.
\frac{36+60\sqrt{3}}{96}
Subtract 108 from 144 to get 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}