Evaluate
\frac{118}{45}\approx 2.622222222
Factor
\frac{2 \cdot 59}{3 ^ {2} \cdot 5} = 2\frac{28}{45} = 2.6222222222222222
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)118}\\\end{array}
Use the 1^{st} digit 1 from dividend 118
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)118}\\\end{array}
Since 1 is less than 45, use the next digit 1 from dividend 118 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)118}\\\end{array}
Use the 2^{nd} digit 1 from dividend 118
\begin{array}{l}\phantom{45)}00\phantom{4}\\45\overline{)118}\\\end{array}
Since 11 is less than 45, use the next digit 8 from dividend 118 and add 0 to the quotient
\begin{array}{l}\phantom{45)}00\phantom{5}\\45\overline{)118}\\\end{array}
Use the 3^{rd} digit 8 from dividend 118
\begin{array}{l}\phantom{45)}002\phantom{6}\\45\overline{)118}\\\phantom{45)}\underline{\phantom{9}90\phantom{}}\\\phantom{45)9}28\\\end{array}
Find closest multiple of 45 to 118. We see that 2 \times 45 = 90 is the nearest. Now subtract 90 from 118 to get reminder 28. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }28
Since 28 is less than 45, stop the division. The reminder is 28. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}