Evaluate
\frac{118}{43}\approx 2.744186047
Factor
\frac{2 \cdot 59}{43} = 2\frac{32}{43} = 2.744186046511628
Share
Copied to clipboard
\begin{array}{l}\phantom{43)}\phantom{1}\\43\overline{)118}\\\end{array}
Use the 1^{st} digit 1 from dividend 118
\begin{array}{l}\phantom{43)}0\phantom{2}\\43\overline{)118}\\\end{array}
Since 1 is less than 43, use the next digit 1 from dividend 118 and add 0 to the quotient
\begin{array}{l}\phantom{43)}0\phantom{3}\\43\overline{)118}\\\end{array}
Use the 2^{nd} digit 1 from dividend 118
\begin{array}{l}\phantom{43)}00\phantom{4}\\43\overline{)118}\\\end{array}
Since 11 is less than 43, use the next digit 8 from dividend 118 and add 0 to the quotient
\begin{array}{l}\phantom{43)}00\phantom{5}\\43\overline{)118}\\\end{array}
Use the 3^{rd} digit 8 from dividend 118
\begin{array}{l}\phantom{43)}002\phantom{6}\\43\overline{)118}\\\phantom{43)}\underline{\phantom{9}86\phantom{}}\\\phantom{43)9}32\\\end{array}
Find closest multiple of 43 to 118. We see that 2 \times 43 = 86 is the nearest. Now subtract 86 from 118 to get reminder 32. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }32
Since 32 is less than 43, stop the division. The reminder is 32. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}