Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Rationalize the denominator of \frac{113-\sqrt{11}}{\sqrt{13}+\sqrt{11}} by multiplying numerator and denominator by \sqrt{13}-\sqrt{11}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{\left(\sqrt{13}\right)^{2}-\left(\sqrt{11}\right)^{2}}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Consider \left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{13-11}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Square \sqrt{13}. Square \sqrt{11}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}
Subtract 11 from 13 to get 2.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}{\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}
Rationalize the denominator of \frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}} by multiplying numerator and denominator by \sqrt{13}+\sqrt{11}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}{\left(\sqrt{13}\right)^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}{13-11}
Square \sqrt{13}. Square \sqrt{11}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{\left(\sqrt{13}+\sqrt{11}\right)\left(\sqrt{13}+\sqrt{11}\right)}{2}
Subtract 11 from 13 to get 2.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{\left(\sqrt{13}+\sqrt{11}\right)^{2}}{2}
Multiply \sqrt{13}+\sqrt{11} and \sqrt{13}+\sqrt{11} to get \left(\sqrt{13}+\sqrt{11}\right)^{2}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{\left(\sqrt{13}\right)^{2}+2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}}{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{13}+\sqrt{11}\right)^{2}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{13+2\sqrt{13}\sqrt{11}+\left(\sqrt{11}\right)^{2}}{2}
The square of \sqrt{13} is 13.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{13+2\sqrt{143}+\left(\sqrt{11}\right)^{2}}{2}
To multiply \sqrt{13} and \sqrt{11}, multiply the numbers under the square root.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{13+2\sqrt{143}+11}{2}
The square of \sqrt{11} is 11.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{24+2\sqrt{143}}{2}
Add 13 and 11 to get 24.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+12+\sqrt{143}
Divide each term of 24+2\sqrt{143} by 2 to get 12+\sqrt{143}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2}+\frac{2\left(12+\sqrt{143}\right)}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 12+\sqrt{143} times \frac{2}{2}.
\frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)+2\left(12+\sqrt{143}\right)}{2}
Since \frac{\left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)}{2} and \frac{2\left(12+\sqrt{143}\right)}{2} have the same denominator, add them by adding their numerators.
\frac{113\sqrt{13}-113\sqrt{11}-\sqrt{143}+11+24+2\sqrt{143}}{2}
Do the multiplications in \left(113-\sqrt{11}\right)\left(\sqrt{13}-\sqrt{11}\right)+2\left(12+\sqrt{143}\right).
\frac{113\sqrt{13}-113\sqrt{11}+\sqrt{143}+35}{2}
Do the calculations in 113\sqrt{13}-113\sqrt{11}-\sqrt{143}+11+24+2\sqrt{143}.