Evaluate
\frac{422}{195}\approx 2.164102564
Factor
\frac{2 \cdot 211}{3 \cdot 5 \cdot 13} = 2\frac{32}{195} = 2.164102564102564
Share
Copied to clipboard
\frac{1232+623+875+\frac{72}{5}\times 39}{39\times 39}
Multiply 112 and 11 to get 1232. Multiply 89 and 7 to get 623. Multiply 175 and 5 to get 875.
\frac{1855+875+\frac{72}{5}\times 39}{39\times 39}
Add 1232 and 623 to get 1855.
\frac{2730+\frac{72}{5}\times 39}{39\times 39}
Add 1855 and 875 to get 2730.
\frac{2730+\frac{72\times 39}{5}}{39\times 39}
Express \frac{72}{5}\times 39 as a single fraction.
\frac{2730+\frac{2808}{5}}{39\times 39}
Multiply 72 and 39 to get 2808.
\frac{\frac{13650}{5}+\frac{2808}{5}}{39\times 39}
Convert 2730 to fraction \frac{13650}{5}.
\frac{\frac{13650+2808}{5}}{39\times 39}
Since \frac{13650}{5} and \frac{2808}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{16458}{5}}{39\times 39}
Add 13650 and 2808 to get 16458.
\frac{\frac{16458}{5}}{1521}
Multiply 39 and 39 to get 1521.
\frac{16458}{5\times 1521}
Express \frac{\frac{16458}{5}}{1521} as a single fraction.
\frac{16458}{7605}
Multiply 5 and 1521 to get 7605.
\frac{422}{195}
Reduce the fraction \frac{16458}{7605} to lowest terms by extracting and canceling out 39.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}