Evaluate
\frac{1111}{222}\approx 5.004504505
Factor
\frac{11 \cdot 101}{2 \cdot 3 \cdot 37} = 5\frac{1}{222} = 5.004504504504505
Share
Copied to clipboard
\begin{array}{l}\phantom{222)}\phantom{1}\\222\overline{)1111}\\\end{array}
Use the 1^{st} digit 1 from dividend 1111
\begin{array}{l}\phantom{222)}0\phantom{2}\\222\overline{)1111}\\\end{array}
Since 1 is less than 222, use the next digit 1 from dividend 1111 and add 0 to the quotient
\begin{array}{l}\phantom{222)}0\phantom{3}\\222\overline{)1111}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1111
\begin{array}{l}\phantom{222)}00\phantom{4}\\222\overline{)1111}\\\end{array}
Since 11 is less than 222, use the next digit 1 from dividend 1111 and add 0 to the quotient
\begin{array}{l}\phantom{222)}00\phantom{5}\\222\overline{)1111}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1111
\begin{array}{l}\phantom{222)}000\phantom{6}\\222\overline{)1111}\\\end{array}
Since 111 is less than 222, use the next digit 1 from dividend 1111 and add 0 to the quotient
\begin{array}{l}\phantom{222)}000\phantom{7}\\222\overline{)1111}\\\end{array}
Use the 4^{th} digit 1 from dividend 1111
\begin{array}{l}\phantom{222)}0005\phantom{8}\\222\overline{)1111}\\\phantom{222)}\underline{\phantom{}1110\phantom{}}\\\phantom{222)999}1\\\end{array}
Find closest multiple of 222 to 1111. We see that 5 \times 222 = 1110 is the nearest. Now subtract 1110 from 1111 to get reminder 1. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }1
Since 1 is less than 222, stop the division. The reminder is 1. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}