Solve for x
x = \frac{19}{7} = 2\frac{5}{7} \approx 2.714285714
Graph
Share
Copied to clipboard
\left(x+3\right)\left(11x-2\right)-\left(2x+2\right)\left(3x-1\right)=\left(x+1\right)\left(5x+15\right)
Variable x cannot be equal to any of the values -3,-1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+1\right)\left(x+3\right), the least common multiple of 2x+2,x+3,2x+6.
11x^{2}+31x-6-\left(2x+2\right)\left(3x-1\right)=\left(x+1\right)\left(5x+15\right)
Use the distributive property to multiply x+3 by 11x-2 and combine like terms.
11x^{2}+31x-6-\left(6x^{2}+4x-2\right)=\left(x+1\right)\left(5x+15\right)
Use the distributive property to multiply 2x+2 by 3x-1 and combine like terms.
11x^{2}+31x-6-6x^{2}-4x+2=\left(x+1\right)\left(5x+15\right)
To find the opposite of 6x^{2}+4x-2, find the opposite of each term.
5x^{2}+31x-6-4x+2=\left(x+1\right)\left(5x+15\right)
Combine 11x^{2} and -6x^{2} to get 5x^{2}.
5x^{2}+27x-6+2=\left(x+1\right)\left(5x+15\right)
Combine 31x and -4x to get 27x.
5x^{2}+27x-4=\left(x+1\right)\left(5x+15\right)
Add -6 and 2 to get -4.
5x^{2}+27x-4=5x^{2}+20x+15
Use the distributive property to multiply x+1 by 5x+15 and combine like terms.
5x^{2}+27x-4-5x^{2}=20x+15
Subtract 5x^{2} from both sides.
27x-4=20x+15
Combine 5x^{2} and -5x^{2} to get 0.
27x-4-20x=15
Subtract 20x from both sides.
7x-4=15
Combine 27x and -20x to get 7x.
7x=15+4
Add 4 to both sides.
7x=19
Add 15 and 4 to get 19.
x=\frac{19}{7}
Divide both sides by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}