Evaluate
-\frac{11}{2}+6i=-5.5+6i
Real Part
-\frac{11}{2} = -5\frac{1}{2} = -5.5
Quiz
Complex Number
5 problems similar to:
\frac { 11 i } { 1 - i } - ( \frac { i } { 1 - i } ) ^ { 2 }
Share
Copied to clipboard
\frac{11i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\left(\frac{i}{1-i}\right)^{2}
Multiply both numerator and denominator of \frac{11i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{-11+11i}{2}-\left(\frac{i}{1-i}\right)^{2}
Do the multiplications in \frac{11i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-\frac{11}{2}+\frac{11}{2}i-\left(\frac{i}{1-i}\right)^{2}
Divide -11+11i by 2 to get -\frac{11}{2}+\frac{11}{2}i.
-\frac{11}{2}+\frac{11}{2}i-\left(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2}
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
-\frac{11}{2}+\frac{11}{2}i-\left(\frac{-1+i}{2}\right)^{2}
Do the multiplications in \frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-\frac{11}{2}+\frac{11}{2}i-\left(-\frac{1}{2}+\frac{1}{2}i\right)^{2}
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{11}{2}+\frac{11}{2}i-\left(-\frac{1}{2}i\right)
Calculate -\frac{1}{2}+\frac{1}{2}i to the power of 2 and get -\frac{1}{2}i.
-\frac{11}{2}+\frac{11}{2}i+\frac{1}{2}i
The opposite of -\frac{1}{2}i is \frac{1}{2}i.
-\frac{11}{2}+6i
Add -\frac{11}{2}+\frac{11}{2}i and \frac{1}{2}i to get -\frac{11}{2}+6i.
Re(\frac{11i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\left(\frac{i}{1-i}\right)^{2})
Multiply both numerator and denominator of \frac{11i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{-11+11i}{2}-\left(\frac{i}{1-i}\right)^{2})
Do the multiplications in \frac{11i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(\frac{i}{1-i}\right)^{2})
Divide -11+11i by 2 to get -\frac{11}{2}+\frac{11}{2}i.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2})
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(\frac{-1+i}{2}\right)^{2})
Do the multiplications in \frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(-\frac{1}{2}+\frac{1}{2}i\right)^{2})
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(-\frac{1}{2}i\right))
Calculate -\frac{1}{2}+\frac{1}{2}i to the power of 2 and get -\frac{1}{2}i.
Re(-\frac{11}{2}+\frac{11}{2}i+\frac{1}{2}i)
The opposite of -\frac{1}{2}i is \frac{1}{2}i.
Re(-\frac{11}{2}+6i)
Add -\frac{11}{2}+\frac{11}{2}i and \frac{1}{2}i to get -\frac{11}{2}+6i.
-\frac{11}{2}
The real part of -\frac{11}{2}+6i is -\frac{11}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}