Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{11i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\left(\frac{i}{1-i}\right)^{2}
Multiply both numerator and denominator of \frac{11i}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{-11+11i}{2}-\left(\frac{i}{1-i}\right)^{2}
Do the multiplications in \frac{11i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-\frac{11}{2}+\frac{11}{2}i-\left(\frac{i}{1-i}\right)^{2}
Divide -11+11i by 2 to get -\frac{11}{2}+\frac{11}{2}i.
-\frac{11}{2}+\frac{11}{2}i-\left(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2}
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
-\frac{11}{2}+\frac{11}{2}i-\left(\frac{-1+i}{2}\right)^{2}
Do the multiplications in \frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-\frac{11}{2}+\frac{11}{2}i-\left(-\frac{1}{2}+\frac{1}{2}i\right)^{2}
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
-\frac{11}{2}+\frac{11}{2}i-\left(-\frac{1}{2}i\right)
Calculate -\frac{1}{2}+\frac{1}{2}i to the power of 2 and get -\frac{1}{2}i.
-\frac{11}{2}+\frac{11}{2}i+\frac{1}{2}i
The opposite of -\frac{1}{2}i is \frac{1}{2}i.
-\frac{11}{2}+6i
Add -\frac{11}{2}+\frac{11}{2}i and \frac{1}{2}i to get -\frac{11}{2}+6i.
Re(\frac{11i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\left(\frac{i}{1-i}\right)^{2})
Multiply both numerator and denominator of \frac{11i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{-11+11i}{2}-\left(\frac{i}{1-i}\right)^{2})
Do the multiplications in \frac{11i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(\frac{i}{1-i}\right)^{2})
Divide -11+11i by 2 to get -\frac{11}{2}+\frac{11}{2}i.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(\frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)^{2})
Multiply both numerator and denominator of \frac{i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(\frac{-1+i}{2}\right)^{2})
Do the multiplications in \frac{i\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(-\frac{1}{2}+\frac{1}{2}i\right)^{2})
Divide -1+i by 2 to get -\frac{1}{2}+\frac{1}{2}i.
Re(-\frac{11}{2}+\frac{11}{2}i-\left(-\frac{1}{2}i\right))
Calculate -\frac{1}{2}+\frac{1}{2}i to the power of 2 and get -\frac{1}{2}i.
Re(-\frac{11}{2}+\frac{11}{2}i+\frac{1}{2}i)
The opposite of -\frac{1}{2}i is \frac{1}{2}i.
Re(-\frac{11}{2}+6i)
Add -\frac{11}{2}+\frac{11}{2}i and \frac{1}{2}i to get -\frac{11}{2}+6i.
-\frac{11}{2}
The real part of -\frac{11}{2}+6i is -\frac{11}{2}.