Solve for c
c = \frac{19}{7} = 2\frac{5}{7} \approx 2.714285714
Share
Copied to clipboard
\left(c+3\right)\left(11c-2\right)-\left(2c+2\right)\left(3c-1\right)=\left(c+1\right)\left(5c+15\right)
Variable c cannot be equal to any of the values -3,-1 since division by zero is not defined. Multiply both sides of the equation by 2\left(c+1\right)\left(c+3\right), the least common multiple of 2c+2,c+3,2c+6.
11c^{2}+31c-6-\left(2c+2\right)\left(3c-1\right)=\left(c+1\right)\left(5c+15\right)
Use the distributive property to multiply c+3 by 11c-2 and combine like terms.
11c^{2}+31c-6-\left(6c^{2}+4c-2\right)=\left(c+1\right)\left(5c+15\right)
Use the distributive property to multiply 2c+2 by 3c-1 and combine like terms.
11c^{2}+31c-6-6c^{2}-4c+2=\left(c+1\right)\left(5c+15\right)
To find the opposite of 6c^{2}+4c-2, find the opposite of each term.
5c^{2}+31c-6-4c+2=\left(c+1\right)\left(5c+15\right)
Combine 11c^{2} and -6c^{2} to get 5c^{2}.
5c^{2}+27c-6+2=\left(c+1\right)\left(5c+15\right)
Combine 31c and -4c to get 27c.
5c^{2}+27c-4=\left(c+1\right)\left(5c+15\right)
Add -6 and 2 to get -4.
5c^{2}+27c-4=5c^{2}+20c+15
Use the distributive property to multiply c+1 by 5c+15 and combine like terms.
5c^{2}+27c-4-5c^{2}=20c+15
Subtract 5c^{2} from both sides.
27c-4=20c+15
Combine 5c^{2} and -5c^{2} to get 0.
27c-4-20c=15
Subtract 20c from both sides.
7c-4=15
Combine 27c and -20c to get 7c.
7c=15+4
Add 4 to both sides.
7c=19
Add 15 and 4 to get 19.
c=\frac{19}{7}
Divide both sides by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}