Skip to main content
Evaluate
Tick mark Image

Share

\frac{11-\sqrt{7}}{\sqrt{11}+\sqrt{7}}\times 1
Divide \sqrt{11}-\sqrt{7} by \sqrt{11}-\sqrt{7} to get 1.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{\left(\sqrt{11}+\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}\times 1
Rationalize the denominator of \frac{11-\sqrt{7}}{\sqrt{11}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{11}-\sqrt{7}.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{7}\right)^{2}}\times 1
Consider \left(\sqrt{11}+\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{11-7}\times 1
Square \sqrt{11}. Square \sqrt{7}.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{4}\times 1
Subtract 7 from 11 to get 4.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{4}
Express \frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{4}\times 1 as a single fraction.
\frac{11\sqrt{11}-11\sqrt{7}-\sqrt{7}\sqrt{11}+\left(\sqrt{7}\right)^{2}}{4}
Apply the distributive property by multiplying each term of 11-\sqrt{7} by each term of \sqrt{11}-\sqrt{7}.
\frac{11\sqrt{11}-11\sqrt{7}-\sqrt{77}+\left(\sqrt{7}\right)^{2}}{4}
To multiply \sqrt{7} and \sqrt{11}, multiply the numbers under the square root.
\frac{11\sqrt{11}-11\sqrt{7}-\sqrt{77}+7}{4}
The square of \sqrt{7} is 7.