Evaluate
\frac{11\sqrt{11}+7-\sqrt{77}-11\sqrt{7}}{4}\approx 1.401160971
Share
Copied to clipboard
\frac{11-\sqrt{7}}{\sqrt{11}+\sqrt{7}}\times 1
Divide \sqrt{11}-\sqrt{7} by \sqrt{11}-\sqrt{7} to get 1.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{\left(\sqrt{11}+\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}\times 1
Rationalize the denominator of \frac{11-\sqrt{7}}{\sqrt{11}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{11}-\sqrt{7}.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{7}\right)^{2}}\times 1
Consider \left(\sqrt{11}+\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{11-7}\times 1
Square \sqrt{11}. Square \sqrt{7}.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{4}\times 1
Subtract 7 from 11 to get 4.
\frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{4}
Express \frac{\left(11-\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}{4}\times 1 as a single fraction.
\frac{11\sqrt{11}-11\sqrt{7}-\sqrt{7}\sqrt{11}+\left(\sqrt{7}\right)^{2}}{4}
Apply the distributive property by multiplying each term of 11-\sqrt{7} by each term of \sqrt{11}-\sqrt{7}.
\frac{11\sqrt{11}-11\sqrt{7}-\sqrt{77}+\left(\sqrt{7}\right)^{2}}{4}
To multiply \sqrt{7} and \sqrt{11}, multiply the numbers under the square root.
\frac{11\sqrt{11}-11\sqrt{7}-\sqrt{77}+7}{4}
The square of \sqrt{7} is 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}