Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)}{\left(\sqrt{33}-\sqrt{3}\right)\left(\sqrt{33}+\sqrt{3}\right)}\times \frac{\sqrt{3}}{\sqrt{11}}
Rationalize the denominator of \frac{11-\sqrt{11}}{\sqrt{33}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{33}+\sqrt{3}.
\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)}{\left(\sqrt{33}\right)^{2}-\left(\sqrt{3}\right)^{2}}\times \frac{\sqrt{3}}{\sqrt{11}}
Consider \left(\sqrt{33}-\sqrt{3}\right)\left(\sqrt{33}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)}{33-3}\times \frac{\sqrt{3}}{\sqrt{11}}
Square \sqrt{33}. Square \sqrt{3}.
\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)}{30}\times \frac{\sqrt{3}}{\sqrt{11}}
Subtract 3 from 33 to get 30.
\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)}{30}\times \frac{\sqrt{3}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)}{30}\times \frac{\sqrt{3}\sqrt{11}}{11}
The square of \sqrt{11} is 11.
\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)}{30}\times \frac{\sqrt{33}}{11}
To multiply \sqrt{3} and \sqrt{11}, multiply the numbers under the square root.
\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)\sqrt{33}}{30\times 11}
Multiply \frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)}{30} times \frac{\sqrt{33}}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(11-\sqrt{11}\right)\left(\sqrt{33}+\sqrt{3}\right)\sqrt{33}}{330}
Multiply 30 and 11 to get 330.
\frac{\left(11\sqrt{33}+11\sqrt{3}-\sqrt{11}\sqrt{33}-\sqrt{11}\sqrt{3}\right)\sqrt{33}}{330}
Apply the distributive property by multiplying each term of 11-\sqrt{11} by each term of \sqrt{33}+\sqrt{3}.
\frac{\left(11\sqrt{33}+11\sqrt{3}-\sqrt{11}\sqrt{11}\sqrt{3}-\sqrt{11}\sqrt{3}\right)\sqrt{33}}{330}
Factor 33=11\times 3. Rewrite the square root of the product \sqrt{11\times 3} as the product of square roots \sqrt{11}\sqrt{3}.
\frac{\left(11\sqrt{33}+11\sqrt{3}-11\sqrt{3}-\sqrt{11}\sqrt{3}\right)\sqrt{33}}{330}
Multiply \sqrt{11} and \sqrt{11} to get 11.
\frac{\left(11\sqrt{33}-\sqrt{11}\sqrt{3}\right)\sqrt{33}}{330}
Combine 11\sqrt{3} and -11\sqrt{3} to get 0.
\frac{\left(11\sqrt{33}-\sqrt{33}\right)\sqrt{33}}{330}
To multiply \sqrt{11} and \sqrt{3}, multiply the numbers under the square root.
\frac{10\sqrt{33}\sqrt{33}}{330}
Combine 11\sqrt{33} and -\sqrt{33} to get 10\sqrt{33}.
\frac{10\times 33}{330}
Multiply \sqrt{33} and \sqrt{33} to get 33.
\frac{330}{330}
Multiply 10 and 33 to get 330.
1
Divide 330 by 330 to get 1.