Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{11}{5}-\sqrt{\frac{\frac{5}{3}}{23^{-1}}}+\frac{3}{10}
Subtract \frac{2}{3} from \frac{71}{3} to get 23.
\frac{11}{5}-\sqrt{\frac{\frac{5}{3}}{\frac{1}{23}}}+\frac{3}{10}
Calculate 23 to the power of -1 and get \frac{1}{23}.
\frac{11}{5}-\sqrt{\frac{5}{3}\times 23}+\frac{3}{10}
Divide \frac{5}{3} by \frac{1}{23} by multiplying \frac{5}{3} by the reciprocal of \frac{1}{23}.
\frac{11}{5}-\sqrt{\frac{115}{3}}+\frac{3}{10}
Multiply \frac{5}{3} and 23 to get \frac{115}{3}.
\frac{11}{5}-\frac{\sqrt{115}}{\sqrt{3}}+\frac{3}{10}
Rewrite the square root of the division \sqrt{\frac{115}{3}} as the division of square roots \frac{\sqrt{115}}{\sqrt{3}}.
\frac{11}{5}-\frac{\sqrt{115}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{3}{10}
Rationalize the denominator of \frac{\sqrt{115}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{11}{5}-\frac{\sqrt{115}\sqrt{3}}{3}+\frac{3}{10}
The square of \sqrt{3} is 3.
\frac{11}{5}-\frac{\sqrt{345}}{3}+\frac{3}{10}
To multiply \sqrt{115} and \sqrt{3}, multiply the numbers under the square root.
\frac{5}{2}-\frac{\sqrt{345}}{3}
Add \frac{11}{5} and \frac{3}{10} to get \frac{5}{2}.
\frac{5\times 3}{6}-\frac{2\sqrt{345}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{\sqrt{345}}{3} times \frac{2}{2}.
\frac{5\times 3-2\sqrt{345}}{6}
Since \frac{5\times 3}{6} and \frac{2\sqrt{345}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15-2\sqrt{345}}{6}
Do the multiplications in 5\times 3-2\sqrt{345}.