Solve for x
x=-10
Graph
Share
Copied to clipboard
30x\times \frac{11}{5}-15\left(x-20\right)=10\left(2x-1\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 5,2x,3x.
66x-15\left(x-20\right)=10\left(2x-1\right)
Multiply 30 and \frac{11}{5} to get 66.
66x-15x+300=10\left(2x-1\right)
Use the distributive property to multiply -15 by x-20.
51x+300=10\left(2x-1\right)
Combine 66x and -15x to get 51x.
51x+300=20x-10
Use the distributive property to multiply 10 by 2x-1.
51x+300-20x=-10
Subtract 20x from both sides.
31x+300=-10
Combine 51x and -20x to get 31x.
31x=-10-300
Subtract 300 from both sides.
31x=-310
Subtract 300 from -10 to get -310.
x=\frac{-310}{31}
Divide both sides by 31.
x=-10
Divide -310 by 31 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}