Evaluate
\frac{43}{15}\approx 2.866666667
Factor
\frac{43}{3 \cdot 5} = 2\frac{13}{15} = 2.8666666666666667
Share
Copied to clipboard
\frac{33}{15}-\frac{5}{15}-\left(\frac{2}{5}-\frac{5}{6}-\left(\frac{3}{4}-\frac{1}{2}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Least common multiple of 5 and 3 is 15. Convert \frac{11}{5} and \frac{1}{3} to fractions with denominator 15.
\frac{33-5}{15}-\left(\frac{2}{5}-\frac{5}{6}-\left(\frac{3}{4}-\frac{1}{2}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Since \frac{33}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{15}-\left(\frac{2}{5}-\frac{5}{6}-\left(\frac{3}{4}-\frac{1}{2}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Subtract 5 from 33 to get 28.
\frac{28}{15}-\left(\frac{12}{30}-\frac{25}{30}-\left(\frac{3}{4}-\frac{1}{2}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Least common multiple of 5 and 6 is 30. Convert \frac{2}{5} and \frac{5}{6} to fractions with denominator 30.
\frac{28}{15}-\left(\frac{12-25}{30}-\left(\frac{3}{4}-\frac{1}{2}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Since \frac{12}{30} and \frac{25}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{3}{4}-\frac{1}{2}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Subtract 25 from 12 to get -13.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{3}{4}-\frac{2}{4}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{3-2}{4}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Since \frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{1}{4}-\left(\frac{7}{30}-\frac{4}{5}-1\right)-\frac{1}{4}\right)\right)-1
Subtract 2 from 3 to get 1.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{1}{4}-\left(\frac{7}{30}-\frac{24}{30}-1\right)-\frac{1}{4}\right)\right)-1
Least common multiple of 30 and 5 is 30. Convert \frac{7}{30} and \frac{4}{5} to fractions with denominator 30.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{1}{4}-\left(\frac{7-24}{30}-1\right)-\frac{1}{4}\right)\right)-1
Since \frac{7}{30} and \frac{24}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{1}{4}-\left(-\frac{17}{30}-1\right)-\frac{1}{4}\right)\right)-1
Subtract 24 from 7 to get -17.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{1}{4}-\left(-\frac{17}{30}-\frac{30}{30}\right)-\frac{1}{4}\right)\right)-1
Convert 1 to fraction \frac{30}{30}.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{1}{4}-\frac{-17-30}{30}-\frac{1}{4}\right)\right)-1
Since -\frac{17}{30} and \frac{30}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{1}{4}-\left(-\frac{47}{30}\right)-\frac{1}{4}\right)\right)-1
Subtract 30 from -17 to get -47.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{1}{4}+\frac{47}{30}-\frac{1}{4}\right)\right)-1
The opposite of -\frac{47}{30} is \frac{47}{30}.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{15}{60}+\frac{94}{60}-\frac{1}{4}\right)\right)-1
Least common multiple of 4 and 30 is 60. Convert \frac{1}{4} and \frac{47}{30} to fractions with denominator 60.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{15+94}{60}-\frac{1}{4}\right)\right)-1
Since \frac{15}{60} and \frac{94}{60} have the same denominator, add them by adding their numerators.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{109}{60}-\frac{1}{4}\right)\right)-1
Add 15 and 94 to get 109.
\frac{28}{15}-\left(-\frac{13}{30}-\left(\frac{109}{60}-\frac{15}{60}\right)\right)-1
Least common multiple of 60 and 4 is 60. Convert \frac{109}{60} and \frac{1}{4} to fractions with denominator 60.
\frac{28}{15}-\left(-\frac{13}{30}-\frac{109-15}{60}\right)-1
Since \frac{109}{60} and \frac{15}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{15}-\left(-\frac{13}{30}-\frac{94}{60}\right)-1
Subtract 15 from 109 to get 94.
\frac{28}{15}-\left(-\frac{13}{30}-\frac{47}{30}\right)-1
Reduce the fraction \frac{94}{60} to lowest terms by extracting and canceling out 2.
\frac{28}{15}-\frac{-13-47}{30}-1
Since -\frac{13}{30} and \frac{47}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{15}-\frac{-60}{30}-1
Subtract 47 from -13 to get -60.
\frac{28}{15}-\left(-2\right)-1
Divide -60 by 30 to get -2.
\frac{28}{15}+2-1
The opposite of -2 is 2.
\frac{28}{15}+\frac{30}{15}-1
Convert 2 to fraction \frac{30}{15}.
\frac{28+30}{15}-1
Since \frac{28}{15} and \frac{30}{15} have the same denominator, add them by adding their numerators.
\frac{58}{15}-1
Add 28 and 30 to get 58.
\frac{58}{15}-\frac{15}{15}
Convert 1 to fraction \frac{15}{15}.
\frac{58-15}{15}
Since \frac{58}{15} and \frac{15}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{43}{15}
Subtract 15 from 58 to get 43.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}