Evaluate
-\frac{11}{9}\approx -1.222222222
Factor
-\frac{11}{9} = -1\frac{2}{9} = -1.2222222222222223
Share
Copied to clipboard
\frac{\frac{11}{5}\times 13}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Divide \frac{\frac{11}{5}}{-\frac{2\times 5+3}{5}} by \frac{9}{13} by multiplying \frac{\frac{11}{5}}{-\frac{2\times 5+3}{5}} by the reciprocal of \frac{9}{13}.
\frac{\frac{11\times 13}{5}}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Express \frac{11}{5}\times 13 as a single fraction.
\frac{\frac{143}{5}}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Multiply 11 and 13 to get 143.
\frac{\frac{143}{5}}{\left(-\frac{10+3}{5}\right)\times 9}
Multiply 2 and 5 to get 10.
\frac{\frac{143}{5}}{-\frac{13}{5}\times 9}
Add 10 and 3 to get 13.
\frac{\frac{143}{5}}{\frac{-13\times 9}{5}}
Express -\frac{13}{5}\times 9 as a single fraction.
\frac{\frac{143}{5}}{\frac{-117}{5}}
Multiply -13 and 9 to get -117.
\frac{\frac{143}{5}}{-\frac{117}{5}}
Fraction \frac{-117}{5} can be rewritten as -\frac{117}{5} by extracting the negative sign.
\frac{143}{5}\left(-\frac{5}{117}\right)
Divide \frac{143}{5} by -\frac{117}{5} by multiplying \frac{143}{5} by the reciprocal of -\frac{117}{5}.
\frac{143\left(-5\right)}{5\times 117}
Multiply \frac{143}{5} times -\frac{5}{117} by multiplying numerator times numerator and denominator times denominator.
\frac{-715}{585}
Do the multiplications in the fraction \frac{143\left(-5\right)}{5\times 117}.
-\frac{11}{9}
Reduce the fraction \frac{-715}{585} to lowest terms by extracting and canceling out 65.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}