Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{11}{15}\times 13}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Divide \frac{\frac{11}{15}}{-\frac{2\times 5+3}{5}} by \frac{9}{13} by multiplying \frac{\frac{11}{15}}{-\frac{2\times 5+3}{5}} by the reciprocal of \frac{9}{13}.
\frac{\frac{11\times 13}{15}}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Express \frac{11}{15}\times 13 as a single fraction.
\frac{\frac{143}{15}}{\left(-\frac{2\times 5+3}{5}\right)\times 9}
Multiply 11 and 13 to get 143.
\frac{\frac{143}{15}}{\left(-\frac{10+3}{5}\right)\times 9}
Multiply 2 and 5 to get 10.
\frac{\frac{143}{15}}{-\frac{13}{5}\times 9}
Add 10 and 3 to get 13.
\frac{\frac{143}{15}}{\frac{-13\times 9}{5}}
Express -\frac{13}{5}\times 9 as a single fraction.
\frac{\frac{143}{15}}{\frac{-117}{5}}
Multiply -13 and 9 to get -117.
\frac{\frac{143}{15}}{-\frac{117}{5}}
Fraction \frac{-117}{5} can be rewritten as -\frac{117}{5} by extracting the negative sign.
\frac{143}{15}\left(-\frac{5}{117}\right)
Divide \frac{143}{15} by -\frac{117}{5} by multiplying \frac{143}{15} by the reciprocal of -\frac{117}{5}.
\frac{143\left(-5\right)}{15\times 117}
Multiply \frac{143}{15} times -\frac{5}{117} by multiplying numerator times numerator and denominator times denominator.
\frac{-715}{1755}
Do the multiplications in the fraction \frac{143\left(-5\right)}{15\times 117}.
-\frac{11}{27}
Reduce the fraction \frac{-715}{1755} to lowest terms by extracting and canceling out 65.