Evaluate
\frac{9\sqrt{6}}{2}+8\approx 19.022703843
Share
Copied to clipboard
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}
Rationalize the denominator of \frac{11\sqrt{3}-3\sqrt{2}}{3\sqrt{2}-2\sqrt{3}} by multiplying numerator and denominator by 3\sqrt{2}+2\sqrt{3}.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Consider \left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{9\times 2-\left(-2\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{18-\left(-2\sqrt{3}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{18-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{18-4\left(\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{18-4\times 3}
The square of \sqrt{3} is 3.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{18-12}
Multiply 4 and 3 to get 12.
\frac{\left(11\sqrt{3}-3\sqrt{2}\right)\left(3\sqrt{2}+2\sqrt{3}\right)}{6}
Subtract 12 from 18 to get 6.
\frac{33\sqrt{3}\sqrt{2}+22\left(\sqrt{3}\right)^{2}-9\left(\sqrt{2}\right)^{2}-6\sqrt{3}\sqrt{2}}{6}
Apply the distributive property by multiplying each term of 11\sqrt{3}-3\sqrt{2} by each term of 3\sqrt{2}+2\sqrt{3}.
\frac{33\sqrt{6}+22\left(\sqrt{3}\right)^{2}-9\left(\sqrt{2}\right)^{2}-6\sqrt{3}\sqrt{2}}{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{33\sqrt{6}+22\times 3-9\left(\sqrt{2}\right)^{2}-6\sqrt{3}\sqrt{2}}{6}
The square of \sqrt{3} is 3.
\frac{33\sqrt{6}+66-9\left(\sqrt{2}\right)^{2}-6\sqrt{3}\sqrt{2}}{6}
Multiply 22 and 3 to get 66.
\frac{33\sqrt{6}+66-9\times 2-6\sqrt{3}\sqrt{2}}{6}
The square of \sqrt{2} is 2.
\frac{33\sqrt{6}+66-18-6\sqrt{3}\sqrt{2}}{6}
Multiply -9 and 2 to get -18.
\frac{33\sqrt{6}+48-6\sqrt{3}\sqrt{2}}{6}
Subtract 18 from 66 to get 48.
\frac{33\sqrt{6}+48-6\sqrt{6}}{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{27\sqrt{6}+48}{6}
Combine 33\sqrt{6} and -6\sqrt{6} to get 27\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}