Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{11!}{\left(3!\right)^{2}\times 2!\times 2!}-\frac{10!}{3!\times 2!\times 2!\times 2!}
Multiply 3! and 3! to get \left(3!\right)^{2}.
\frac{11!}{\left(3!\right)^{2}\times \left(2!\right)^{2}}-\frac{10!}{3!\times 2!\times 2!\times 2!}
Multiply 2! and 2! to get \left(2!\right)^{2}.
\frac{11!}{\left(3!\right)^{2}\times \left(2!\right)^{2}}-\frac{10!}{3!\times \left(2!\right)^{2}\times 2!}
Multiply 2! and 2! to get \left(2!\right)^{2}.
\frac{11!}{\left(3!\right)^{2}\times \left(2!\right)^{2}}-\frac{10!}{3!\times \left(2!\right)^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{39916800}{\left(3!\right)^{2}\times \left(2!\right)^{2}}-\frac{10!}{3!\times \left(2!\right)^{3}}
The factorial of 11 is 39916800.
\frac{39916800}{6^{2}\times \left(2!\right)^{2}}-\frac{10!}{3!\times \left(2!\right)^{3}}
The factorial of 3 is 6.
\frac{39916800}{36\times \left(2!\right)^{2}}-\frac{10!}{3!\times \left(2!\right)^{3}}
Calculate 6 to the power of 2 and get 36.
\frac{39916800}{36\times 2^{2}}-\frac{10!}{3!\times \left(2!\right)^{3}}
The factorial of 2 is 2.
\frac{39916800}{36\times 4}-\frac{10!}{3!\times \left(2!\right)^{3}}
Calculate 2 to the power of 2 and get 4.
\frac{39916800}{144}-\frac{10!}{3!\times \left(2!\right)^{3}}
Multiply 36 and 4 to get 144.
277200-\frac{10!}{3!\times \left(2!\right)^{3}}
Divide 39916800 by 144 to get 277200.
277200-\frac{3628800}{3!\times \left(2!\right)^{3}}
The factorial of 10 is 3628800.
277200-\frac{3628800}{6\times \left(2!\right)^{3}}
The factorial of 3 is 6.
277200-\frac{3628800}{6\times 2^{3}}
The factorial of 2 is 2.
277200-\frac{3628800}{6\times 8}
Calculate 2 to the power of 3 and get 8.
277200-\frac{3628800}{48}
Multiply 6 and 8 to get 48.
277200-75600
Divide 3628800 by 48 to get 75600.
201600
Subtract 75600 from 277200 to get 201600.