Evaluate
\frac{1070986}{387}\approx 2767.405684755
Factor
\frac{2 \cdot 7 \cdot 227 \cdot 337}{3 ^ {2} \cdot 43} = 2767\frac{157}{387} = 2767.405684754522
Share
Copied to clipboard
\begin{array}{l}\phantom{387)}\phantom{1}\\387\overline{)1070986}\\\end{array}
Use the 1^{st} digit 1 from dividend 1070986
\begin{array}{l}\phantom{387)}0\phantom{2}\\387\overline{)1070986}\\\end{array}
Since 1 is less than 387, use the next digit 0 from dividend 1070986 and add 0 to the quotient
\begin{array}{l}\phantom{387)}0\phantom{3}\\387\overline{)1070986}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1070986
\begin{array}{l}\phantom{387)}00\phantom{4}\\387\overline{)1070986}\\\end{array}
Since 10 is less than 387, use the next digit 7 from dividend 1070986 and add 0 to the quotient
\begin{array}{l}\phantom{387)}00\phantom{5}\\387\overline{)1070986}\\\end{array}
Use the 3^{rd} digit 7 from dividend 1070986
\begin{array}{l}\phantom{387)}000\phantom{6}\\387\overline{)1070986}\\\end{array}
Since 107 is less than 387, use the next digit 0 from dividend 1070986 and add 0 to the quotient
\begin{array}{l}\phantom{387)}000\phantom{7}\\387\overline{)1070986}\\\end{array}
Use the 4^{th} digit 0 from dividend 1070986
\begin{array}{l}\phantom{387)}0002\phantom{8}\\387\overline{)1070986}\\\phantom{387)}\underline{\phantom{9}774\phantom{999}}\\\phantom{387)9}296\\\end{array}
Find closest multiple of 387 to 1070. We see that 2 \times 387 = 774 is the nearest. Now subtract 774 from 1070 to get reminder 296. Add 2 to quotient.
\begin{array}{l}\phantom{387)}0002\phantom{9}\\387\overline{)1070986}\\\phantom{387)}\underline{\phantom{9}774\phantom{999}}\\\phantom{387)9}2969\\\end{array}
Use the 5^{th} digit 9 from dividend 1070986
\begin{array}{l}\phantom{387)}00027\phantom{10}\\387\overline{)1070986}\\\phantom{387)}\underline{\phantom{9}774\phantom{999}}\\\phantom{387)9}2969\\\phantom{387)}\underline{\phantom{9}2709\phantom{99}}\\\phantom{387)99}260\\\end{array}
Find closest multiple of 387 to 2969. We see that 7 \times 387 = 2709 is the nearest. Now subtract 2709 from 2969 to get reminder 260. Add 7 to quotient.
\begin{array}{l}\phantom{387)}00027\phantom{11}\\387\overline{)1070986}\\\phantom{387)}\underline{\phantom{9}774\phantom{999}}\\\phantom{387)9}2969\\\phantom{387)}\underline{\phantom{9}2709\phantom{99}}\\\phantom{387)99}2608\\\end{array}
Use the 6^{th} digit 8 from dividend 1070986
\begin{array}{l}\phantom{387)}000276\phantom{12}\\387\overline{)1070986}\\\phantom{387)}\underline{\phantom{9}774\phantom{999}}\\\phantom{387)9}2969\\\phantom{387)}\underline{\phantom{9}2709\phantom{99}}\\\phantom{387)99}2608\\\phantom{387)}\underline{\phantom{99}2322\phantom{9}}\\\phantom{387)999}286\\\end{array}
Find closest multiple of 387 to 2608. We see that 6 \times 387 = 2322 is the nearest. Now subtract 2322 from 2608 to get reminder 286. Add 6 to quotient.
\begin{array}{l}\phantom{387)}000276\phantom{13}\\387\overline{)1070986}\\\phantom{387)}\underline{\phantom{9}774\phantom{999}}\\\phantom{387)9}2969\\\phantom{387)}\underline{\phantom{9}2709\phantom{99}}\\\phantom{387)99}2608\\\phantom{387)}\underline{\phantom{99}2322\phantom{9}}\\\phantom{387)999}2866\\\end{array}
Use the 7^{th} digit 6 from dividend 1070986
\begin{array}{l}\phantom{387)}0002767\phantom{14}\\387\overline{)1070986}\\\phantom{387)}\underline{\phantom{9}774\phantom{999}}\\\phantom{387)9}2969\\\phantom{387)}\underline{\phantom{9}2709\phantom{99}}\\\phantom{387)99}2608\\\phantom{387)}\underline{\phantom{99}2322\phantom{9}}\\\phantom{387)999}2866\\\phantom{387)}\underline{\phantom{999}2709\phantom{}}\\\phantom{387)9999}157\\\end{array}
Find closest multiple of 387 to 2866. We see that 7 \times 387 = 2709 is the nearest. Now subtract 2709 from 2866 to get reminder 157. Add 7 to quotient.
\text{Quotient: }2767 \text{Reminder: }157
Since 157 is less than 387, stop the division. The reminder is 157. The topmost line 0002767 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2767.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}