Evaluate
\frac{107}{24}\approx 4.458333333
Factor
\frac{107}{2 ^ {3} \cdot 3} = 4\frac{11}{24} = 4.458333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)107}\\\end{array}
Use the 1^{st} digit 1 from dividend 107
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)107}\\\end{array}
Since 1 is less than 24, use the next digit 0 from dividend 107 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)107}\\\end{array}
Use the 2^{nd} digit 0 from dividend 107
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)107}\\\end{array}
Since 10 is less than 24, use the next digit 7 from dividend 107 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)107}\\\end{array}
Use the 3^{rd} digit 7 from dividend 107
\begin{array}{l}\phantom{24)}004\phantom{6}\\24\overline{)107}\\\phantom{24)}\underline{\phantom{9}96\phantom{}}\\\phantom{24)9}11\\\end{array}
Find closest multiple of 24 to 107. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 107 to get reminder 11. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }11
Since 11 is less than 24, stop the division. The reminder is 11. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}