Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-i.
\frac{104i\left(5-i\right)}{5^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{104i\left(5-i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{104i\times 5+104\left(-1\right)i^{2}}{26}
Multiply 104i times 5-i.
\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26}
By definition, i^{2} is -1.
\frac{104+520i}{26}
Do the multiplications in 104i\times 5+104\left(-1\right)\left(-1\right). Reorder the terms.
4+20i
Divide 104+520i by 26 to get 4+20i.
Re(\frac{104i\left(5-i\right)}{\left(5+i\right)\left(5-i\right)})
Multiply both numerator and denominator of \frac{104i}{5+i} by the complex conjugate of the denominator, 5-i.
Re(\frac{104i\left(5-i\right)}{5^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{104i\left(5-i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{104i\times 5+104\left(-1\right)i^{2}}{26})
Multiply 104i times 5-i.
Re(\frac{104i\times 5+104\left(-1\right)\left(-1\right)}{26})
By definition, i^{2} is -1.
Re(\frac{104+520i}{26})
Do the multiplications in 104i\times 5+104\left(-1\right)\left(-1\right). Reorder the terms.
Re(4+20i)
Divide 104+520i by 26 to get 4+20i.
4
The real part of 4+20i is 4.