Evaluate
\frac{103993}{33102}\approx 3.141592653
Factor
\frac{103993}{2 \cdot 3 ^ {3} \cdot 613} = 3\frac{4687}{33102} = 3.1415926530119025
Share
Copied to clipboard
\begin{array}{l}\phantom{33102)}\phantom{1}\\33102\overline{)103993}\\\end{array}
Use the 1^{st} digit 1 from dividend 103993
\begin{array}{l}\phantom{33102)}0\phantom{2}\\33102\overline{)103993}\\\end{array}
Since 1 is less than 33102, use the next digit 0 from dividend 103993 and add 0 to the quotient
\begin{array}{l}\phantom{33102)}0\phantom{3}\\33102\overline{)103993}\\\end{array}
Use the 2^{nd} digit 0 from dividend 103993
\begin{array}{l}\phantom{33102)}00\phantom{4}\\33102\overline{)103993}\\\end{array}
Since 10 is less than 33102, use the next digit 3 from dividend 103993 and add 0 to the quotient
\begin{array}{l}\phantom{33102)}00\phantom{5}\\33102\overline{)103993}\\\end{array}
Use the 3^{rd} digit 3 from dividend 103993
\begin{array}{l}\phantom{33102)}000\phantom{6}\\33102\overline{)103993}\\\end{array}
Since 103 is less than 33102, use the next digit 9 from dividend 103993 and add 0 to the quotient
\begin{array}{l}\phantom{33102)}000\phantom{7}\\33102\overline{)103993}\\\end{array}
Use the 4^{th} digit 9 from dividend 103993
\begin{array}{l}\phantom{33102)}0000\phantom{8}\\33102\overline{)103993}\\\end{array}
Since 1039 is less than 33102, use the next digit 9 from dividend 103993 and add 0 to the quotient
\begin{array}{l}\phantom{33102)}0000\phantom{9}\\33102\overline{)103993}\\\end{array}
Use the 5^{th} digit 9 from dividend 103993
\begin{array}{l}\phantom{33102)}00000\phantom{10}\\33102\overline{)103993}\\\end{array}
Since 10399 is less than 33102, use the next digit 3 from dividend 103993 and add 0 to the quotient
\begin{array}{l}\phantom{33102)}00000\phantom{11}\\33102\overline{)103993}\\\end{array}
Use the 6^{th} digit 3 from dividend 103993
\begin{array}{l}\phantom{33102)}000003\phantom{12}\\33102\overline{)103993}\\\phantom{33102)}\underline{\phantom{9}99306\phantom{}}\\\phantom{33102)99}4687\\\end{array}
Find closest multiple of 33102 to 103993. We see that 3 \times 33102 = 99306 is the nearest. Now subtract 99306 from 103993 to get reminder 4687. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }4687
Since 4687 is less than 33102, stop the division. The reminder is 4687. The topmost line 000003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}