Evaluate
5462
Factor
2\times 2731
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)103778}\\\end{array}
Use the 1^{st} digit 1 from dividend 103778
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)103778}\\\end{array}
Since 1 is less than 19, use the next digit 0 from dividend 103778 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)103778}\\\end{array}
Use the 2^{nd} digit 0 from dividend 103778
\begin{array}{l}\phantom{19)}00\phantom{4}\\19\overline{)103778}\\\end{array}
Since 10 is less than 19, use the next digit 3 from dividend 103778 and add 0 to the quotient
\begin{array}{l}\phantom{19)}00\phantom{5}\\19\overline{)103778}\\\end{array}
Use the 3^{rd} digit 3 from dividend 103778
\begin{array}{l}\phantom{19)}005\phantom{6}\\19\overline{)103778}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)99}8\\\end{array}
Find closest multiple of 19 to 103. We see that 5 \times 19 = 95 is the nearest. Now subtract 95 from 103 to get reminder 8. Add 5 to quotient.
\begin{array}{l}\phantom{19)}005\phantom{7}\\19\overline{)103778}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)99}87\\\end{array}
Use the 4^{th} digit 7 from dividend 103778
\begin{array}{l}\phantom{19)}0054\phantom{8}\\19\overline{)103778}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)99}87\\\phantom{19)}\underline{\phantom{99}76\phantom{99}}\\\phantom{19)99}11\\\end{array}
Find closest multiple of 19 to 87. We see that 4 \times 19 = 76 is the nearest. Now subtract 76 from 87 to get reminder 11. Add 4 to quotient.
\begin{array}{l}\phantom{19)}0054\phantom{9}\\19\overline{)103778}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)99}87\\\phantom{19)}\underline{\phantom{99}76\phantom{99}}\\\phantom{19)99}117\\\end{array}
Use the 5^{th} digit 7 from dividend 103778
\begin{array}{l}\phantom{19)}00546\phantom{10}\\19\overline{)103778}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)99}87\\\phantom{19)}\underline{\phantom{99}76\phantom{99}}\\\phantom{19)99}117\\\phantom{19)}\underline{\phantom{99}114\phantom{9}}\\\phantom{19)9999}3\\\end{array}
Find closest multiple of 19 to 117. We see that 6 \times 19 = 114 is the nearest. Now subtract 114 from 117 to get reminder 3. Add 6 to quotient.
\begin{array}{l}\phantom{19)}00546\phantom{11}\\19\overline{)103778}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)99}87\\\phantom{19)}\underline{\phantom{99}76\phantom{99}}\\\phantom{19)99}117\\\phantom{19)}\underline{\phantom{99}114\phantom{9}}\\\phantom{19)9999}38\\\end{array}
Use the 6^{th} digit 8 from dividend 103778
\begin{array}{l}\phantom{19)}005462\phantom{12}\\19\overline{)103778}\\\phantom{19)}\underline{\phantom{9}95\phantom{999}}\\\phantom{19)99}87\\\phantom{19)}\underline{\phantom{99}76\phantom{99}}\\\phantom{19)99}117\\\phantom{19)}\underline{\phantom{99}114\phantom{9}}\\\phantom{19)9999}38\\\phantom{19)}\underline{\phantom{9999}38\phantom{}}\\\phantom{19)999999}0\\\end{array}
Find closest multiple of 19 to 38. We see that 2 \times 19 = 38 is the nearest. Now subtract 38 from 38 to get reminder 0. Add 2 to quotient.
\text{Quotient: }5462 \text{Reminder: }0
Since 0 is less than 19, stop the division. The reminder is 0. The topmost line 005462 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5462.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}