Evaluate
8
Factor
2^{3}
Share
Copied to clipboard
\begin{array}{l}\phantom{127)}\phantom{1}\\127\overline{)1016}\\\end{array}
Use the 1^{st} digit 1 from dividend 1016
\begin{array}{l}\phantom{127)}0\phantom{2}\\127\overline{)1016}\\\end{array}
Since 1 is less than 127, use the next digit 0 from dividend 1016 and add 0 to the quotient
\begin{array}{l}\phantom{127)}0\phantom{3}\\127\overline{)1016}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1016
\begin{array}{l}\phantom{127)}00\phantom{4}\\127\overline{)1016}\\\end{array}
Since 10 is less than 127, use the next digit 1 from dividend 1016 and add 0 to the quotient
\begin{array}{l}\phantom{127)}00\phantom{5}\\127\overline{)1016}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1016
\begin{array}{l}\phantom{127)}000\phantom{6}\\127\overline{)1016}\\\end{array}
Since 101 is less than 127, use the next digit 6 from dividend 1016 and add 0 to the quotient
\begin{array}{l}\phantom{127)}000\phantom{7}\\127\overline{)1016}\\\end{array}
Use the 4^{th} digit 6 from dividend 1016
\begin{array}{l}\phantom{127)}0008\phantom{8}\\127\overline{)1016}\\\phantom{127)}\underline{\phantom{}1016\phantom{}}\\\phantom{127)9999}0\\\end{array}
Find closest multiple of 127 to 1016. We see that 8 \times 127 = 1016 is the nearest. Now subtract 1016 from 1016 to get reminder 0. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }0
Since 0 is less than 127, stop the division. The reminder is 0. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}