Evaluate
\frac{101}{60}\approx 1.683333333
Factor
\frac{101}{2 ^ {2} \cdot 3 \cdot 5} = 1\frac{41}{60} = 1.6833333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)101}\\\end{array}
Use the 1^{st} digit 1 from dividend 101
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)101}\\\end{array}
Since 1 is less than 60, use the next digit 0 from dividend 101 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)101}\\\end{array}
Use the 2^{nd} digit 0 from dividend 101
\begin{array}{l}\phantom{60)}00\phantom{4}\\60\overline{)101}\\\end{array}
Since 10 is less than 60, use the next digit 1 from dividend 101 and add 0 to the quotient
\begin{array}{l}\phantom{60)}00\phantom{5}\\60\overline{)101}\\\end{array}
Use the 3^{rd} digit 1 from dividend 101
\begin{array}{l}\phantom{60)}001\phantom{6}\\60\overline{)101}\\\phantom{60)}\underline{\phantom{9}60\phantom{}}\\\phantom{60)9}41\\\end{array}
Find closest multiple of 60 to 101. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 101 to get reminder 41. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }41
Since 41 is less than 60, stop the division. The reminder is 41. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}