Skip to main content
Solve for A
Tick mark Image
Solve for B
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Multiply both sides of the equation by 1003002, the least common multiple of 1002,1001.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
Multiply \frac{1}{1001} and 1003 to get \frac{1003}{1001}.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Swap sides so that all variable terms are on the left hand side.
1001A+\frac{1002}{1001}C=\frac{1003}{1001}-1002B
Subtract 1002B from both sides.
1001A=\frac{1003}{1001}-1002B-\frac{1002}{1001}C
Subtract \frac{1002}{1001}C from both sides.
1001A=-\frac{1002C}{1001}-1002B+\frac{1003}{1001}
The equation is in standard form.
\frac{1001A}{1001}=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Divide both sides by 1001.
A=\frac{-\frac{1002C}{1001}-1002B+\frac{1003}{1001}}{1001}
Dividing by 1001 undoes the multiplication by 1001.
A=-\frac{1002B}{1001}-\frac{1002C}{1002001}+\frac{1003}{1002001}
Divide \frac{1003}{1001}-1002B-\frac{1002C}{1001} by 1001.
\frac{1}{1001}\times 1003=1001A+1002B+\frac{1002}{1001}C
Multiply both sides of the equation by 1003002, the least common multiple of 1002,1001.
\frac{1003}{1001}=1001A+1002B+\frac{1002}{1001}C
Multiply \frac{1}{1001} and 1003 to get \frac{1003}{1001}.
1001A+1002B+\frac{1002}{1001}C=\frac{1003}{1001}
Swap sides so that all variable terms are on the left hand side.
1002B+\frac{1002}{1001}C=\frac{1003}{1001}-1001A
Subtract 1001A from both sides.
1002B=\frac{1003}{1001}-1001A-\frac{1002}{1001}C
Subtract \frac{1002}{1001}C from both sides.
1002B=-\frac{1002C}{1001}-1001A+\frac{1003}{1001}
The equation is in standard form.
\frac{1002B}{1002}=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Divide both sides by 1002.
B=\frac{-\frac{1002C}{1001}-1001A+\frac{1003}{1001}}{1002}
Dividing by 1002 undoes the multiplication by 1002.
B=-\frac{C}{1001}-\frac{1001A}{1002}+\frac{1003}{1003002}
Divide \frac{1003}{1001}-1001A-\frac{1002C}{1001} by 1002.