Solve for x_2
\left\{\begin{matrix}x_{2}=\frac{7385a}{872}-\frac{367x_{1}}{1744}+\frac{47475}{436}\text{, }&x_{1}\neq \frac{-630a-8100}{67}\\x_{2}\in (\frac{3x_{1}}{4}+\frac{35a}{2}+225,\frac{7385a}{872}-\frac{367x_{1}}{1744}+\frac{47475}{436}]\text{, }&x_{1}<\frac{-630a-8100}{67}\\x_{2}\in [\frac{7385a}{872}-\frac{367x_{1}}{1744}+\frac{47475}{436},\frac{3x_{1}}{4}+\frac{35a}{2}+225)\text{, }&x_{1}>\frac{-630a-8100}{67}\end{matrix}\right.
Solve for x_1
\left\{\begin{matrix}x_{1}=\frac{189900+14770a-1744x_{2}}{367}\text{, }&x_{2}\neq \frac{700a+9000}{67}\\x_{1}<\frac{4x_{2}}{3}-\frac{70a}{3}-300\text{, }&x_{2}\leq \frac{700a+9000}{67}\\x_{1}\leq \frac{189900+14770a-1744x_{2}}{367}\text{, }&x_{2}>\frac{700a+9000}{67}\\x_{1}>\frac{4x_{2}}{3}-\frac{70a}{3}-300\text{, }&x_{2}\geq \frac{700a+9000}{67}\\x_{1}\geq \frac{189900+14770a-1744x_{2}}{367}\text{, }&x_{2}<\frac{700a+9000}{67}\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}