Solve for x
x=\frac{1000y}{y+1000}
y\neq -1000\text{ and }y\neq 0
Solve for y
y=-\frac{1000x}{x-1000}
x\neq 0\text{ and }x\neq 1000
Graph
Share
Copied to clipboard
1000x=y\times 1000-xy
Multiply both sides of the equation by y.
1000x+xy=y\times 1000
Add xy to both sides.
\left(1000+y\right)x=y\times 1000
Combine all terms containing x.
\left(y+1000\right)x=1000y
The equation is in standard form.
\frac{\left(y+1000\right)x}{y+1000}=\frac{1000y}{y+1000}
Divide both sides by y+1000.
x=\frac{1000y}{y+1000}
Dividing by y+1000 undoes the multiplication by y+1000.
1000x=y\times 1000-xy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y\times 1000-xy=1000x
Swap sides so that all variable terms are on the left hand side.
\left(1000-x\right)y=1000x
Combine all terms containing y.
\frac{\left(1000-x\right)y}{1000-x}=\frac{1000x}{1000-x}
Divide both sides by 1000-x.
y=\frac{1000x}{1000-x}
Dividing by 1000-x undoes the multiplication by 1000-x.
y=\frac{1000x}{1000-x}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}