Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\frac{100\left(600-10\times 35\right)^{2}}{\left(40+10\right)\left(35+15\right)\left(40+35\right)\left(10+15\right)}
Multiply 40 and 15 to get 600.
\frac{100\left(600-350\right)^{2}}{\left(40+10\right)\left(35+15\right)\left(40+35\right)\left(10+15\right)}
Multiply 10 and 35 to get 350.
\frac{100\times 250^{2}}{\left(40+10\right)\left(35+15\right)\left(40+35\right)\left(10+15\right)}
Subtract 350 from 600 to get 250.
\frac{100\times 62500}{\left(40+10\right)\left(35+15\right)\left(40+35\right)\left(10+15\right)}
Calculate 250 to the power of 2 and get 62500.
\frac{6250000}{\left(40+10\right)\left(35+15\right)\left(40+35\right)\left(10+15\right)}
Multiply 100 and 62500 to get 6250000.
\frac{6250000}{50\left(35+15\right)\left(40+35\right)\left(10+15\right)}
Add 40 and 10 to get 50.
\frac{6250000}{50\times 50\left(40+35\right)\left(10+15\right)}
Add 35 and 15 to get 50.
\frac{6250000}{2500\left(40+35\right)\left(10+15\right)}
Multiply 50 and 50 to get 2500.
\frac{6250000}{2500\times 75\left(10+15\right)}
Add 40 and 35 to get 75.
\frac{6250000}{187500\left(10+15\right)}
Multiply 2500 and 75 to get 187500.
\frac{6250000}{187500\times 25}
Add 10 and 15 to get 25.
\frac{6250000}{4687500}
Multiply 187500 and 25 to get 4687500.
\frac{4}{3}
Reduce the fraction \frac{6250000}{4687500} to lowest terms by extracting and canceling out 1562500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}