\frac { 100 ( 1 - 0.8 \% ) } { 1 - 0.08 }
Evaluate
\frac{2480}{23}\approx 107.826086957
Factor
\frac{5 \cdot 31 \cdot 2 ^ {4}}{23} = 107\frac{19}{23} = 107.82608695652173
Share
Copied to clipboard
\frac{100\left(1-\frac{8}{1000}\right)}{1-0.08}
Expand \frac{0.8}{100} by multiplying both numerator and the denominator by 10.
\frac{100\left(1-\frac{1}{125}\right)}{1-0.08}
Reduce the fraction \frac{8}{1000} to lowest terms by extracting and canceling out 8.
\frac{100\left(\frac{125}{125}-\frac{1}{125}\right)}{1-0.08}
Convert 1 to fraction \frac{125}{125}.
\frac{100\times \frac{125-1}{125}}{1-0.08}
Since \frac{125}{125} and \frac{1}{125} have the same denominator, subtract them by subtracting their numerators.
\frac{100\times \frac{124}{125}}{1-0.08}
Subtract 1 from 125 to get 124.
\frac{\frac{100\times 124}{125}}{1-0.08}
Express 100\times \frac{124}{125} as a single fraction.
\frac{\frac{12400}{125}}{1-0.08}
Multiply 100 and 124 to get 12400.
\frac{\frac{496}{5}}{1-0.08}
Reduce the fraction \frac{12400}{125} to lowest terms by extracting and canceling out 25.
\frac{\frac{496}{5}}{0.92}
Subtract 0.08 from 1 to get 0.92.
\frac{496}{5\times 0.92}
Express \frac{\frac{496}{5}}{0.92} as a single fraction.
\frac{496}{4.6}
Multiply 5 and 0.92 to get 4.6.
\frac{4960}{46}
Expand \frac{496}{4.6} by multiplying both numerator and the denominator by 10.
\frac{2480}{23}
Reduce the fraction \frac{4960}{46} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}