Solve for z
z=-\sqrt{1041}i+3\approx 3-32.26453161i
z=3+\sqrt{1041}i\approx 3+32.26453161i
Share
Copied to clipboard
\left(7z-42\right)\times 100-7z\times 100=4z\left(z-6\right)
Variable z cannot be equal to any of the values 0,6 since division by zero is not defined. Multiply both sides of the equation by 7z\left(z-6\right), the least common multiple of z,z-6,7.
700z-4200-7z\times 100=4z\left(z-6\right)
Use the distributive property to multiply 7z-42 by 100.
700z-4200-700z=4z\left(z-6\right)
Multiply 7 and 100 to get 700.
700z-4200-700z=4z^{2}-24z
Use the distributive property to multiply 4z by z-6.
700z-4200-700z-4z^{2}=-24z
Subtract 4z^{2} from both sides.
700z-4200-700z-4z^{2}+24z=0
Add 24z to both sides.
724z-4200-700z-4z^{2}=0
Combine 700z and 24z to get 724z.
24z-4200-4z^{2}=0
Combine 724z and -700z to get 24z.
-4z^{2}+24z-4200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-24±\sqrt{24^{2}-4\left(-4\right)\left(-4200\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 24 for b, and -4200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-24±\sqrt{576-4\left(-4\right)\left(-4200\right)}}{2\left(-4\right)}
Square 24.
z=\frac{-24±\sqrt{576+16\left(-4200\right)}}{2\left(-4\right)}
Multiply -4 times -4.
z=\frac{-24±\sqrt{576-67200}}{2\left(-4\right)}
Multiply 16 times -4200.
z=\frac{-24±\sqrt{-66624}}{2\left(-4\right)}
Add 576 to -67200.
z=\frac{-24±8\sqrt{1041}i}{2\left(-4\right)}
Take the square root of -66624.
z=\frac{-24±8\sqrt{1041}i}{-8}
Multiply 2 times -4.
z=\frac{-24+8\sqrt{1041}i}{-8}
Now solve the equation z=\frac{-24±8\sqrt{1041}i}{-8} when ± is plus. Add -24 to 8i\sqrt{1041}.
z=-\sqrt{1041}i+3
Divide -24+8i\sqrt{1041} by -8.
z=\frac{-8\sqrt{1041}i-24}{-8}
Now solve the equation z=\frac{-24±8\sqrt{1041}i}{-8} when ± is minus. Subtract 8i\sqrt{1041} from -24.
z=3+\sqrt{1041}i
Divide -24-8i\sqrt{1041} by -8.
z=-\sqrt{1041}i+3 z=3+\sqrt{1041}i
The equation is now solved.
\left(7z-42\right)\times 100-7z\times 100=4z\left(z-6\right)
Variable z cannot be equal to any of the values 0,6 since division by zero is not defined. Multiply both sides of the equation by 7z\left(z-6\right), the least common multiple of z,z-6,7.
700z-4200-7z\times 100=4z\left(z-6\right)
Use the distributive property to multiply 7z-42 by 100.
700z-4200-700z=4z\left(z-6\right)
Multiply 7 and 100 to get 700.
700z-4200-700z=4z^{2}-24z
Use the distributive property to multiply 4z by z-6.
700z-4200-700z-4z^{2}=-24z
Subtract 4z^{2} from both sides.
700z-4200-700z-4z^{2}+24z=0
Add 24z to both sides.
724z-4200-700z-4z^{2}=0
Combine 700z and 24z to get 724z.
724z-700z-4z^{2}=4200
Add 4200 to both sides. Anything plus zero gives itself.
24z-4z^{2}=4200
Combine 724z and -700z to get 24z.
-4z^{2}+24z=4200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4z^{2}+24z}{-4}=\frac{4200}{-4}
Divide both sides by -4.
z^{2}+\frac{24}{-4}z=\frac{4200}{-4}
Dividing by -4 undoes the multiplication by -4.
z^{2}-6z=\frac{4200}{-4}
Divide 24 by -4.
z^{2}-6z=-1050
Divide 4200 by -4.
z^{2}-6z+\left(-3\right)^{2}=-1050+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-6z+9=-1050+9
Square -3.
z^{2}-6z+9=-1041
Add -1050 to 9.
\left(z-3\right)^{2}=-1041
Factor z^{2}-6z+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-3\right)^{2}}=\sqrt{-1041}
Take the square root of both sides of the equation.
z-3=\sqrt{1041}i z-3=-\sqrt{1041}i
Simplify.
z=3+\sqrt{1041}i z=-\sqrt{1041}i+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}