Evaluate
\frac{100}{71}\approx 1.408450704
Factor
\frac{2 ^ {2} \cdot 5 ^ {2}}{71} = 1\frac{29}{71} = 1.408450704225352
Share
Copied to clipboard
\begin{array}{l}\phantom{71)}\phantom{1}\\71\overline{)100}\\\end{array}
Use the 1^{st} digit 1 from dividend 100
\begin{array}{l}\phantom{71)}0\phantom{2}\\71\overline{)100}\\\end{array}
Since 1 is less than 71, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{71)}0\phantom{3}\\71\overline{)100}\\\end{array}
Use the 2^{nd} digit 0 from dividend 100
\begin{array}{l}\phantom{71)}00\phantom{4}\\71\overline{)100}\\\end{array}
Since 10 is less than 71, use the next digit 0 from dividend 100 and add 0 to the quotient
\begin{array}{l}\phantom{71)}00\phantom{5}\\71\overline{)100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 100
\begin{array}{l}\phantom{71)}001\phantom{6}\\71\overline{)100}\\\phantom{71)}\underline{\phantom{9}71\phantom{}}\\\phantom{71)9}29\\\end{array}
Find closest multiple of 71 to 100. We see that 1 \times 71 = 71 is the nearest. Now subtract 71 from 100 to get reminder 29. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }29
Since 29 is less than 71, stop the division. The reminder is 29. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}