Evaluate
\frac{5}{2}=2.5
Share
Copied to clipboard
\frac{100\times \left(\frac{\sqrt{2}}{2}\right)^{2}}{20}
Get the value of \sin(45) from trigonometric values table.
\frac{100\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{20}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{100\left(\sqrt{2}\right)^{2}}{2^{2}}}{20}
Express 100\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{100\left(\sqrt{2}\right)^{2}}{2^{2}\times 20}
Express \frac{\frac{100\left(\sqrt{2}\right)^{2}}{2^{2}}}{20} as a single fraction.
\frac{5\left(\sqrt{2}\right)^{2}}{2^{2}}
Cancel out 20 in both numerator and denominator.
\frac{5\times 2}{2^{2}}
The square of \sqrt{2} is 2.
\frac{10}{2^{2}}
Multiply 5 and 2 to get 10.
\frac{10}{4}
Calculate 2 to the power of 2 and get 4.
\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}