Solve for x
x\geq 308
Graph
Share
Copied to clipboard
\frac{7}{6}\left(100+x\right)-x\geq 168
Multiply both sides of the equation by 280. Since 280 is positive, the inequality direction remains the same.
\frac{7}{6}\times 100+\frac{7}{6}x-x\geq 168
Use the distributive property to multiply \frac{7}{6} by 100+x.
\frac{7\times 100}{6}+\frac{7}{6}x-x\geq 168
Express \frac{7}{6}\times 100 as a single fraction.
\frac{700}{6}+\frac{7}{6}x-x\geq 168
Multiply 7 and 100 to get 700.
\frac{350}{3}+\frac{7}{6}x-x\geq 168
Reduce the fraction \frac{700}{6} to lowest terms by extracting and canceling out 2.
\frac{7}{6}x-x\geq 168-\frac{350}{3}
Subtract \frac{350}{3} from both sides.
\frac{7}{6}x-x\geq \frac{504}{3}-\frac{350}{3}
Convert 168 to fraction \frac{504}{3}.
\frac{7}{6}x-x\geq \frac{504-350}{3}
Since \frac{504}{3} and \frac{350}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{6}x-x\geq \frac{154}{3}
Subtract 350 from 504 to get 154.
\frac{1}{6}x\geq \frac{154}{3}
Combine \frac{7}{6}x and -x to get \frac{1}{6}x.
x\geq \frac{154}{3}\times 6
Multiply both sides by 6, the reciprocal of \frac{1}{6}. Since \frac{1}{6} is positive, the inequality direction remains the same.
x\geq \frac{154\times 6}{3}
Express \frac{154}{3}\times 6 as a single fraction.
x\geq \frac{924}{3}
Multiply 154 and 6 to get 924.
x\geq 308
Divide 924 by 3 to get 308.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}