Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(10y^{6}\right)^{1}\times \frac{1}{2y^{4}}
Use the rules of exponents to simplify the expression.
10^{1}\left(y^{6}\right)^{1}\times \frac{1}{2}\times \frac{1}{y^{4}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
10^{1}\times \frac{1}{2}\left(y^{6}\right)^{1}\times \frac{1}{y^{4}}
Use the Commutative Property of Multiplication.
10^{1}\times \frac{1}{2}y^{6}y^{4\left(-1\right)}
To raise a power to another power, multiply the exponents.
10^{1}\times \frac{1}{2}y^{6}y^{-4}
Multiply 4 times -1.
10^{1}\times \frac{1}{2}y^{6-4}
To multiply powers of the same base, add their exponents.
10^{1}\times \frac{1}{2}y^{2}
Add the exponents 6 and -4.
10\times \frac{1}{2}y^{2}
Raise 10 to the power 1.
5y^{2}
Multiply 10 times \frac{1}{2}.
\frac{10^{1}y^{6}}{2^{1}y^{4}}
Use the rules of exponents to simplify the expression.
\frac{10^{1}y^{6-4}}{2^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{10^{1}y^{2}}{2^{1}}
Subtract 4 from 6.
5y^{2}
Divide 10 by 2.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{10}{2}y^{6-4})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(5y^{2})
Do the arithmetic.
2\times 5y^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
10y^{1}
Do the arithmetic.
10y
For any term t, t^{1}=t.