Evaluate
\frac{20x^{4}}{3y}
Differentiate w.r.t. x
\frac{80x^{3}}{3y}
Share
Copied to clipboard
\frac{10xy\times 20y^{2}}{12x}\times \frac{24x^{4}}{60y^{4}}
Divide \frac{10xy}{12} by \frac{x}{20y^{2}} by multiplying \frac{10xy}{12} by the reciprocal of \frac{x}{20y^{2}}.
\frac{5\times 10yy^{2}}{3}\times \frac{24x^{4}}{60y^{4}}
Cancel out 2\times 2x in both numerator and denominator.
\frac{5\times 10y^{3}}{3}\times \frac{24x^{4}}{60y^{4}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{50y^{3}}{3}\times \frac{24x^{4}}{60y^{4}}
Multiply 5 and 10 to get 50.
\frac{50y^{3}}{3}\times \frac{2x^{4}}{5y^{4}}
Cancel out 12 in both numerator and denominator.
\frac{50y^{3}\times 2x^{4}}{3\times 5y^{4}}
Multiply \frac{50y^{3}}{3} times \frac{2x^{4}}{5y^{4}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\times 10x^{4}}{3y}
Cancel out 5y^{3} in both numerator and denominator.
\frac{20x^{4}}{3y}
Multiply 2 and 10 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}