Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
18\left(10x-3\right)-4\left(8x+3\right)+12x+9=-9\left(8\times 4+1\right)
Multiply both sides of the equation by 36, the least common multiple of 2,9,36,4.
180x-54-4\left(8x+3\right)+12x+9=-9\left(8\times 4+1\right)
Use the distributive property to multiply 18 by 10x-3.
180x-54-32x-12+12x+9=-9\left(8\times 4+1\right)
Use the distributive property to multiply -4 by 8x+3.
148x-54-12+12x+9=-9\left(8\times 4+1\right)
Combine 180x and -32x to get 148x.
148x-66+12x+9=-9\left(8\times 4+1\right)
Subtract 12 from -54 to get -66.
160x-66+9=-9\left(8\times 4+1\right)
Combine 148x and 12x to get 160x.
160x-57=-9\left(8\times 4+1\right)
Add -66 and 9 to get -57.
160x-57=-9\left(32+1\right)
Multiply 8 and 4 to get 32.
160x-57=-9\times 33
Add 32 and 1 to get 33.
160x-57=-297
Multiply -9 and 33 to get -297.
160x=-297+57
Add 57 to both sides.
160x=-240
Add -297 and 57 to get -240.
x=\frac{-240}{160}
Divide both sides by 160.
x=-\frac{3}{2}
Reduce the fraction \frac{-240}{160} to lowest terms by extracting and canceling out 80.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}