Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{10x\left(x+7\right)}{x+4}-\frac{10\left(x+7\right)}{9x\left(x+4\right)}
Cancel out x in both numerator and denominator.
\frac{10x\left(x+7\right)\times 9x}{9x\left(x+4\right)}-\frac{10\left(x+7\right)}{9x\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and 9x\left(x+4\right) is 9x\left(x+4\right). Multiply \frac{10x\left(x+7\right)}{x+4} times \frac{9x}{9x}.
\frac{10x\left(x+7\right)\times 9x-10\left(x+7\right)}{9x\left(x+4\right)}
Since \frac{10x\left(x+7\right)\times 9x}{9x\left(x+4\right)} and \frac{10\left(x+7\right)}{9x\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{90x^{3}+630x^{2}-10x-70}{9x\left(x+4\right)}
Do the multiplications in 10x\left(x+7\right)\times 9x-10\left(x+7\right).
\frac{90x^{3}+630x^{2}-10x-70}{9x^{2}+36x}
Expand 9x\left(x+4\right).
\frac{10x\left(x+7\right)}{x+4}-\frac{10\left(x+7\right)}{9x\left(x+4\right)}
Cancel out x in both numerator and denominator.
\frac{10x\left(x+7\right)\times 9x}{9x\left(x+4\right)}-\frac{10\left(x+7\right)}{9x\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and 9x\left(x+4\right) is 9x\left(x+4\right). Multiply \frac{10x\left(x+7\right)}{x+4} times \frac{9x}{9x}.
\frac{10x\left(x+7\right)\times 9x-10\left(x+7\right)}{9x\left(x+4\right)}
Since \frac{10x\left(x+7\right)\times 9x}{9x\left(x+4\right)} and \frac{10\left(x+7\right)}{9x\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{90x^{3}+630x^{2}-10x-70}{9x\left(x+4\right)}
Do the multiplications in 10x\left(x+7\right)\times 9x-10\left(x+7\right).
\frac{90x^{3}+630x^{2}-10x-70}{9x^{2}+36x}
Expand 9x\left(x+4\right).