Solve for x
x = -\frac{76}{13} = -5\frac{11}{13} \approx -5.846153846
Graph
Share
Copied to clipboard
\left(x+9\right)\times 10x-\left(5x+4\right)=2\left(x+9\right)\left(5x+4\right)
Variable x cannot be equal to any of the values -9,-\frac{4}{5} since division by zero is not defined. Multiply both sides of the equation by \left(x+9\right)\left(5x+4\right), the least common multiple of 5x+4,x+9.
\left(10x+90\right)x-\left(5x+4\right)=2\left(x+9\right)\left(5x+4\right)
Use the distributive property to multiply x+9 by 10.
10x^{2}+90x-\left(5x+4\right)=2\left(x+9\right)\left(5x+4\right)
Use the distributive property to multiply 10x+90 by x.
10x^{2}+90x-5x-4=2\left(x+9\right)\left(5x+4\right)
To find the opposite of 5x+4, find the opposite of each term.
10x^{2}+85x-4=2\left(x+9\right)\left(5x+4\right)
Combine 90x and -5x to get 85x.
10x^{2}+85x-4=\left(2x+18\right)\left(5x+4\right)
Use the distributive property to multiply 2 by x+9.
10x^{2}+85x-4=10x^{2}+98x+72
Use the distributive property to multiply 2x+18 by 5x+4 and combine like terms.
10x^{2}+85x-4-10x^{2}=98x+72
Subtract 10x^{2} from both sides.
85x-4=98x+72
Combine 10x^{2} and -10x^{2} to get 0.
85x-4-98x=72
Subtract 98x from both sides.
-13x-4=72
Combine 85x and -98x to get -13x.
-13x=72+4
Add 4 to both sides.
-13x=76
Add 72 and 4 to get 76.
x=\frac{76}{-13}
Divide both sides by -13.
x=-\frac{76}{13}
Fraction \frac{76}{-13} can be rewritten as -\frac{76}{13} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}