Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}-5x+8=10\left(x-\left(-\frac{1}{10}\sqrt{461}-\frac{9}{10}\right)\right)\left(x-\left(\frac{1}{10}\sqrt{461}-\frac{9}{10}\right)\right)
Multiply both sides of the equation by 5\left(x-\left(-\frac{1}{10}\sqrt{461}-\frac{9}{10}\right)\right)\left(x-\left(\frac{1}{10}\sqrt{461}-\frac{9}{10}\right)\right).
10x^{2}-5x+8=10\left(x+\frac{1}{10}\sqrt{461}+\frac{9}{10}\right)\left(x-\left(\frac{1}{10}\sqrt{461}-\frac{9}{10}\right)\right)
To find the opposite of -\frac{1}{10}\sqrt{461}-\frac{9}{10}, find the opposite of each term.
10x^{2}-5x+8=10\left(x+\frac{1}{10}\sqrt{461}+\frac{9}{10}\right)\left(x-\frac{1}{10}\sqrt{461}+\frac{9}{10}\right)
To find the opposite of \frac{1}{10}\sqrt{461}-\frac{9}{10}, find the opposite of each term.
10x^{2}-5x+8=\left(10x+\sqrt{461}+9\right)\left(x-\frac{1}{10}\sqrt{461}+\frac{9}{10}\right)
Use the distributive property to multiply 10 by x+\frac{1}{10}\sqrt{461}+\frac{9}{10}.
10x^{2}-5x+8=10x^{2}+18x-\frac{1}{10}\left(\sqrt{461}\right)^{2}+\frac{81}{10}
Use the distributive property to multiply 10x+\sqrt{461}+9 by x-\frac{1}{10}\sqrt{461}+\frac{9}{10} and combine like terms.
10x^{2}-5x+8=10x^{2}+18x-\frac{1}{10}\times 461+\frac{81}{10}
The square of \sqrt{461} is 461.
10x^{2}-5x+8=10x^{2}+18x-\frac{461}{10}+\frac{81}{10}
Multiply -\frac{1}{10} and 461 to get -\frac{461}{10}.
10x^{2}-5x+8=10x^{2}+18x-38
Add -\frac{461}{10} and \frac{81}{10} to get -38.
10x^{2}-5x+8-10x^{2}=18x-38
Subtract 10x^{2} from both sides.
-5x+8=18x-38
Combine 10x^{2} and -10x^{2} to get 0.
-5x+8-18x=-38
Subtract 18x from both sides.
-23x+8=-38
Combine -5x and -18x to get -23x.
-23x=-38-8
Subtract 8 from both sides.
-23x=-46
Subtract 8 from -38 to get -46.
x=\frac{-46}{-23}
Divide both sides by -23.
x=2
Divide -46 by -23 to get 2.