Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
10x^{2}+59x-43=\left(3x-2\right)\times 20
Variable x cannot be equal to any of the values \frac{3}{5},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(5x-3\right), the least common multiple of 15x^{2}-19x+6,5x-3.
10x^{2}+59x-43=60x-40
Use the distributive property to multiply 3x-2 by 20.
10x^{2}+59x-43-60x=-40
Subtract 60x from both sides.
10x^{2}-x-43=-40
Combine 59x and -60x to get -x.
10x^{2}-x-43+40=0
Add 40 to both sides.
10x^{2}-x-3=0
Add -43 and 40 to get -3.
a+b=-1 ab=10\left(-3\right)=-30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 10x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=-6 b=5
The solution is the pair that gives sum -1.
\left(10x^{2}-6x\right)+\left(5x-3\right)
Rewrite 10x^{2}-x-3 as \left(10x^{2}-6x\right)+\left(5x-3\right).
2x\left(5x-3\right)+5x-3
Factor out 2x in 10x^{2}-6x.
\left(5x-3\right)\left(2x+1\right)
Factor out common term 5x-3 by using distributive property.
x=\frac{3}{5} x=-\frac{1}{2}
To find equation solutions, solve 5x-3=0 and 2x+1=0.
x=-\frac{1}{2}
Variable x cannot be equal to \frac{3}{5}.
10x^{2}+59x-43=\left(3x-2\right)\times 20
Variable x cannot be equal to any of the values \frac{3}{5},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(5x-3\right), the least common multiple of 15x^{2}-19x+6,5x-3.
10x^{2}+59x-43=60x-40
Use the distributive property to multiply 3x-2 by 20.
10x^{2}+59x-43-60x=-40
Subtract 60x from both sides.
10x^{2}-x-43=-40
Combine 59x and -60x to get -x.
10x^{2}-x-43+40=0
Add 40 to both sides.
10x^{2}-x-3=0
Add -43 and 40 to get -3.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 10\left(-3\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -1 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-40\left(-3\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2\times 10}
Multiply -40 times -3.
x=\frac{-\left(-1\right)±\sqrt{121}}{2\times 10}
Add 1 to 120.
x=\frac{-\left(-1\right)±11}{2\times 10}
Take the square root of 121.
x=\frac{1±11}{2\times 10}
The opposite of -1 is 1.
x=\frac{1±11}{20}
Multiply 2 times 10.
x=\frac{12}{20}
Now solve the equation x=\frac{1±11}{20} when ± is plus. Add 1 to 11.
x=\frac{3}{5}
Reduce the fraction \frac{12}{20} to lowest terms by extracting and canceling out 4.
x=-\frac{10}{20}
Now solve the equation x=\frac{1±11}{20} when ± is minus. Subtract 11 from 1.
x=-\frac{1}{2}
Reduce the fraction \frac{-10}{20} to lowest terms by extracting and canceling out 10.
x=\frac{3}{5} x=-\frac{1}{2}
The equation is now solved.
x=-\frac{1}{2}
Variable x cannot be equal to \frac{3}{5}.
10x^{2}+59x-43=\left(3x-2\right)\times 20
Variable x cannot be equal to any of the values \frac{3}{5},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(5x-3\right), the least common multiple of 15x^{2}-19x+6,5x-3.
10x^{2}+59x-43=60x-40
Use the distributive property to multiply 3x-2 by 20.
10x^{2}+59x-43-60x=-40
Subtract 60x from both sides.
10x^{2}-x-43=-40
Combine 59x and -60x to get -x.
10x^{2}-x=-40+43
Add 43 to both sides.
10x^{2}-x=3
Add -40 and 43 to get 3.
\frac{10x^{2}-x}{10}=\frac{3}{10}
Divide both sides by 10.
x^{2}-\frac{1}{10}x=\frac{3}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=\frac{3}{10}+\left(-\frac{1}{20}\right)^{2}
Divide -\frac{1}{10}, the coefficient of the x term, by 2 to get -\frac{1}{20}. Then add the square of -\frac{1}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{3}{10}+\frac{1}{400}
Square -\frac{1}{20} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{121}{400}
Add \frac{3}{10} to \frac{1}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{20}\right)^{2}=\frac{121}{400}
Factor x^{2}-\frac{1}{10}x+\frac{1}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{\frac{121}{400}}
Take the square root of both sides of the equation.
x-\frac{1}{20}=\frac{11}{20} x-\frac{1}{20}=-\frac{11}{20}
Simplify.
x=\frac{3}{5} x=-\frac{1}{2}
Add \frac{1}{20} to both sides of the equation.
x=-\frac{1}{2}
Variable x cannot be equal to \frac{3}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}