Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(10x^{2}+3xy-y^{2}\right)\left(12x+4y\right)}{\left(9x^{2}-y^{2}\right)\left(6x^{2}+3xy\right)}
Divide \frac{10x^{2}+3xy-y^{2}}{9x^{2}-y^{2}} by \frac{6x^{2}+3xy}{12x+4y} by multiplying \frac{10x^{2}+3xy-y^{2}}{9x^{2}-y^{2}} by the reciprocal of \frac{6x^{2}+3xy}{12x+4y}.
\frac{4\left(2x+y\right)\left(3x+y\right)\left(5x-y\right)}{3x\left(2x+y\right)\left(3x+y\right)\left(3x-y\right)}
Factor the expressions that are not already factored.
\frac{4\left(5x-y\right)}{3x\left(3x-y\right)}
Cancel out \left(2x+y\right)\left(3x+y\right) in both numerator and denominator.
\frac{20x-4y}{9x^{2}-3xy}
Expand the expression.
\frac{\left(10x^{2}+3xy-y^{2}\right)\left(12x+4y\right)}{\left(9x^{2}-y^{2}\right)\left(6x^{2}+3xy\right)}
Divide \frac{10x^{2}+3xy-y^{2}}{9x^{2}-y^{2}} by \frac{6x^{2}+3xy}{12x+4y} by multiplying \frac{10x^{2}+3xy-y^{2}}{9x^{2}-y^{2}} by the reciprocal of \frac{6x^{2}+3xy}{12x+4y}.
\frac{4\left(2x+y\right)\left(3x+y\right)\left(5x-y\right)}{3x\left(2x+y\right)\left(3x+y\right)\left(3x-y\right)}
Factor the expressions that are not already factored.
\frac{4\left(5x-y\right)}{3x\left(3x-y\right)}
Cancel out \left(2x+y\right)\left(3x+y\right) in both numerator and denominator.
\frac{20x-4y}{9x^{2}-3xy}
Expand the expression.