Solve for E (complex solution)
\left\{\begin{matrix}E=0\text{, }&X\neq 0\text{ and }m\neq 0\text{ and }l\neq 0\\E\in \mathrm{C}\text{, }&l\neq 0\text{ and }m\neq 0\text{ and }\left(X=\frac{15}{2}\text{ or }q=0\right)\text{ and }X\neq 0\end{matrix}\right.
Solve for E
\left\{\begin{matrix}E=0\text{, }&X\neq 0\text{ and }m\neq 0\text{ and }l\neq 0\\E\in \mathrm{R}\text{, }&l\neq 0\text{ and }m\neq 0\text{ and }\left(X=\frac{15}{2}\text{ or }q=0\right)\text{ and }X\neq 0\end{matrix}\right.
Solve for X
\left\{\begin{matrix}X=\frac{15}{2}\text{, }&l\neq 0\text{ and }m\neq 0\\X\neq 0\text{, }&\left(E=0\text{ or }q=0\right)\text{ and }l\neq 0\text{ and }m\neq 0\end{matrix}\right.
Quiz
Linear Equation
5 problems similar to:
\frac { 10 m E q } { 5 m l } = \frac { 15 m E q } { X m l }
Share
Copied to clipboard
X\times 10mEq=5\times 15mEq
Multiply both sides of the equation by 5Xlm, the least common multiple of 5ml,Xml.
X\times 10mEq=75mEq
Multiply 5 and 15 to get 75.
X\times 10mEq-75mEq=0
Subtract 75mEq from both sides.
\left(X\times 10mq-75mq\right)E=0
Combine all terms containing E.
\left(10Xmq-75mq\right)E=0
The equation is in standard form.
E=0
Divide 0 by 10Xmq-75mq.
X\times 10mEq=5\times 15mEq
Multiply both sides of the equation by 5Xlm, the least common multiple of 5ml,Xml.
X\times 10mEq=75mEq
Multiply 5 and 15 to get 75.
X\times 10mEq-75mEq=0
Subtract 75mEq from both sides.
\left(X\times 10mq-75mq\right)E=0
Combine all terms containing E.
\left(10Xmq-75mq\right)E=0
The equation is in standard form.
E=0
Divide 0 by 10Xmq-75mq.
X\times 10mEq=5\times 15mEq
Variable X cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5Xlm, the least common multiple of 5ml,Xml.
X\times 10mEq=75mEq
Multiply 5 and 15 to get 75.
10EmqX=75Emq
The equation is in standard form.
\frac{10EmqX}{10Emq}=\frac{75Emq}{10Emq}
Divide both sides by 10mEq.
X=\frac{75Emq}{10Emq}
Dividing by 10mEq undoes the multiplication by 10mEq.
X=\frac{15}{2}
Divide 75mEq by 10mEq.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}