Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

\left(10k^{5}\right)^{1}\times \frac{1}{2k^{2}}
Use the rules of exponents to simplify the expression.
10^{1}\left(k^{5}\right)^{1}\times \frac{1}{2}\times \frac{1}{k^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
10^{1}\times \frac{1}{2}\left(k^{5}\right)^{1}\times \frac{1}{k^{2}}
Use the Commutative Property of Multiplication.
10^{1}\times \frac{1}{2}k^{5}k^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
10^{1}\times \frac{1}{2}k^{5}k^{-2}
Multiply 2 times -1.
10^{1}\times \frac{1}{2}k^{5-2}
To multiply powers of the same base, add their exponents.
10^{1}\times \frac{1}{2}k^{3}
Add the exponents 5 and -2.
10\times \frac{1}{2}k^{3}
Raise 10 to the power 1.
5k^{3}
Multiply 10 times \frac{1}{2}.
\frac{10^{1}k^{5}}{2^{1}k^{2}}
Use the rules of exponents to simplify the expression.
\frac{10^{1}k^{5-2}}{2^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{10^{1}k^{3}}{2^{1}}
Subtract 2 from 5.
5k^{3}
Divide 10 by 2.
\frac{\mathrm{d}}{\mathrm{d}k}(\frac{10}{2}k^{5-2})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}k}(5k^{3})
Do the arithmetic.
3\times 5k^{3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
15k^{2}
Do the arithmetic.