Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{10i\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-i.
\frac{10i\left(3-i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{10i\left(3-i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{10i\times 3+10\left(-1\right)i^{2}}{10}
Multiply 10i times 3-i.
\frac{10i\times 3+10\left(-1\right)\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{10+30i}{10}
Do the multiplications in 10i\times 3+10\left(-1\right)\left(-1\right). Reorder the terms.
1+3i
Divide 10+30i by 10 to get 1+3i.
Re(\frac{10i\left(3-i\right)}{\left(3+i\right)\left(3-i\right)})
Multiply both numerator and denominator of \frac{10i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{10i\left(3-i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{10i\left(3-i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{10i\times 3+10\left(-1\right)i^{2}}{10})
Multiply 10i times 3-i.
Re(\frac{10i\times 3+10\left(-1\right)\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{10+30i}{10})
Do the multiplications in 10i\times 3+10\left(-1\right)\left(-1\right). Reorder the terms.
Re(1+3i)
Divide 10+30i by 10 to get 1+3i.
1
The real part of 1+3i is 1.