Evaluate
\frac{44}{15}\approx 2.933333333
Factor
\frac{2 ^ {2} \cdot 11}{3 \cdot 5} = 2\frac{14}{15} = 2.933333333333333
Share
Copied to clipboard
\frac{10-\frac{6\times 3}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Express 6\times \frac{3}{5} as a single fraction.
\frac{10-\frac{18}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Multiply 6 and 3 to get 18.
\frac{\frac{50}{5}-\frac{18}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Convert 10 to fraction \frac{50}{5}.
\frac{\frac{50-18}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Since \frac{50}{5} and \frac{18}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{32}{5}}{15\times \frac{4}{5}}+\frac{12}{5}
Subtract 18 from 50 to get 32.
\frac{\frac{32}{5}}{\frac{15\times 4}{5}}+\frac{12}{5}
Express 15\times \frac{4}{5} as a single fraction.
\frac{\frac{32}{5}}{\frac{60}{5}}+\frac{12}{5}
Multiply 15 and 4 to get 60.
\frac{\frac{32}{5}}{12}+\frac{12}{5}
Divide 60 by 5 to get 12.
\frac{32}{5\times 12}+\frac{12}{5}
Express \frac{\frac{32}{5}}{12} as a single fraction.
\frac{32}{60}+\frac{12}{5}
Multiply 5 and 12 to get 60.
\frac{8}{15}+\frac{12}{5}
Reduce the fraction \frac{32}{60} to lowest terms by extracting and canceling out 4.
\frac{8}{15}+\frac{36}{15}
Least common multiple of 15 and 5 is 15. Convert \frac{8}{15} and \frac{12}{5} to fractions with denominator 15.
\frac{8+36}{15}
Since \frac{8}{15} and \frac{36}{15} have the same denominator, add them by adding their numerators.
\frac{44}{15}
Add 8 and 36 to get 44.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}