Solve for x
x = -\frac{25}{4} = -6\frac{1}{4} = -6.25
Graph
Share
Copied to clipboard
\left(x+2\right)\times 10-\left(3x+1\right)=\left(x-2\right)\times 3
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x-2,x^{2}-4,x+2.
10x+20-\left(3x+1\right)=\left(x-2\right)\times 3
Use the distributive property to multiply x+2 by 10.
10x+20-3x-1=\left(x-2\right)\times 3
To find the opposite of 3x+1, find the opposite of each term.
7x+20-1=\left(x-2\right)\times 3
Combine 10x and -3x to get 7x.
7x+19=\left(x-2\right)\times 3
Subtract 1 from 20 to get 19.
7x+19=3x-6
Use the distributive property to multiply x-2 by 3.
7x+19-3x=-6
Subtract 3x from both sides.
4x+19=-6
Combine 7x and -3x to get 4x.
4x=-6-19
Subtract 19 from both sides.
4x=-25
Subtract 19 from -6 to get -25.
x=\frac{-25}{4}
Divide both sides by 4.
x=-\frac{25}{4}
Fraction \frac{-25}{4} can be rewritten as -\frac{25}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}