Solve for x
x=-10
x=4
Graph
Share
Copied to clipboard
\left(x+2\right)\times 10+x\left(x+2\right)\left(-0.5\right)=x\times 12
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right), the least common multiple of x,x+2.
10x+20+x\left(x+2\right)\left(-0.5\right)=x\times 12
Use the distributive property to multiply x+2 by 10.
10x+20+\left(x^{2}+2x\right)\left(-0.5\right)=x\times 12
Use the distributive property to multiply x by x+2.
10x+20-0.5x^{2}-x=x\times 12
Use the distributive property to multiply x^{2}+2x by -0.5.
9x+20-0.5x^{2}=x\times 12
Combine 10x and -x to get 9x.
9x+20-0.5x^{2}-x\times 12=0
Subtract x\times 12 from both sides.
-3x+20-0.5x^{2}=0
Combine 9x and -x\times 12 to get -3x.
-0.5x^{2}-3x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-0.5\right)\times 20}}{2\left(-0.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.5 for a, -3 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-0.5\right)\times 20}}{2\left(-0.5\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+2\times 20}}{2\left(-0.5\right)}
Multiply -4 times -0.5.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\left(-0.5\right)}
Multiply 2 times 20.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\left(-0.5\right)}
Add 9 to 40.
x=\frac{-\left(-3\right)±7}{2\left(-0.5\right)}
Take the square root of 49.
x=\frac{3±7}{2\left(-0.5\right)}
The opposite of -3 is 3.
x=\frac{3±7}{-1}
Multiply 2 times -0.5.
x=\frac{10}{-1}
Now solve the equation x=\frac{3±7}{-1} when ± is plus. Add 3 to 7.
x=-10
Divide 10 by -1.
x=-\frac{4}{-1}
Now solve the equation x=\frac{3±7}{-1} when ± is minus. Subtract 7 from 3.
x=4
Divide -4 by -1.
x=-10 x=4
The equation is now solved.
\left(x+2\right)\times 10+x\left(x+2\right)\left(-0.5\right)=x\times 12
Variable x cannot be equal to any of the values -2,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+2\right), the least common multiple of x,x+2.
10x+20+x\left(x+2\right)\left(-0.5\right)=x\times 12
Use the distributive property to multiply x+2 by 10.
10x+20+\left(x^{2}+2x\right)\left(-0.5\right)=x\times 12
Use the distributive property to multiply x by x+2.
10x+20-0.5x^{2}-x=x\times 12
Use the distributive property to multiply x^{2}+2x by -0.5.
9x+20-0.5x^{2}=x\times 12
Combine 10x and -x to get 9x.
9x+20-0.5x^{2}-x\times 12=0
Subtract x\times 12 from both sides.
-3x+20-0.5x^{2}=0
Combine 9x and -x\times 12 to get -3x.
-3x-0.5x^{2}=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
-0.5x^{2}-3x=-20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.5x^{2}-3x}{-0.5}=-\frac{20}{-0.5}
Multiply both sides by -2.
x^{2}+\left(-\frac{3}{-0.5}\right)x=-\frac{20}{-0.5}
Dividing by -0.5 undoes the multiplication by -0.5.
x^{2}+6x=-\frac{20}{-0.5}
Divide -3 by -0.5 by multiplying -3 by the reciprocal of -0.5.
x^{2}+6x=40
Divide -20 by -0.5 by multiplying -20 by the reciprocal of -0.5.
x^{2}+6x+3^{2}=40+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=40+9
Square 3.
x^{2}+6x+9=49
Add 40 to 9.
\left(x+3\right)^{2}=49
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
x+3=7 x+3=-7
Simplify.
x=4 x=-10
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}